Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries

协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞

基本信息

  • 批准号:
    2230061
  • 负责人:
  • 金额:
    $ 24.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

This project aims to improve security and resilience of machine learning (ML) software. Machine learning has been deployed in many critical domains such as drug discovery, financial planning, autonomous driving, and malware detection. This makes it crucial for ML-based software solutions to function properly even when attacked by malicious actors, leading to a line of research focused on functional vulnerabilities, attacks that attempt to make ML systems produce incorrect results. Less studied, however, are other kinds of vulnerabilities that don’t attack the core prediction functionality but still pose security risks. These “non-functional” vulnerabilities include denial of service attacks, which attempt to render the system unusable through overloading it; and side-channel attacks, which analyze features like response time to infer sensitive information about the models or data they are trained on. This project will develop methods for detecting and correcting these kinds of non-functional vulnerabilities and make those methods widely available, as well as disseminate educational materials to help security researchers and ML software developers be more aware of these risks. Despite a growing number of reported denial-of-service (DoS) and side channel (SC) vulnerabilities in core ML libraries such as NumPy and TensorFlow, a systematic approach to identifying and debugging them has not been explored due to multiple technical challenges: i) non-functional behaviors are not explicitly encoded in the syntax or semantics of ML code; ii) existing fault localization methods often fail to establish causal relationships; and iii) automatic DoS/SC mitigation is largely lacking for ML applications. This project will develop a novel methodology that combines evolutionary algorithms with a gradient-based guidance to detect DoS and quantify the strengths of SC vulnerabilities. For debugging, the project explores causally guided statistical methods to localize the root causes and guide an optimal mitigation policy. The project team will make a concerted effort to increase participation of women, Hispanic, and other underrepresented communities via special topic courses, research experiences for undergraduates, and summer camps for K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project aims to improve security and resilience of machine learning (ML) software. Machine learning has been deployed in many critical domains such as drug discovery, financial planning, autonomous driving, and malware detection. This makes it crucial for ML-based software solutions to function properly even when attacked by malicious actors, leading to a line of research focused on functional vulnerabilities, attacks that attempt to make ML systems produce incorrect results. Less studied, however, are other kinds of vulnerabilities that don’t attack the core prediction functionality but still pose security risks. These “non-functional” vulnerabilities include denial of service attacks, which attempt to render the system unusable through overloading it; and side-channel attacks, which analyze features like response time to infer sensitive information about the models or data they are trained on. This project will develop methods for detecting and correcting these kinds of non-functional vulnerabilities and make those methods widely available, as well as disseminate educational materials to help security researchers and ML software developers be more aware of these risks. Despite a growing number of reported denial-of-service (DoS) and side channel (SC) vulnerabilities in core ML libraries such as NumPy and TensorFlow, a systematic approach to identifying and debugging them has not been explored due to multiple technical challenges: i) non-functional behaviors are not explicitly encoded in the syntax or semantics of ML code; ii) existing fault localization methods often fail to establish causal relationships; and iii) automatic DoS/SC mitigation is largely lacking for ML applications. This project will develop a novel methodology that combines evolutionary algorithms with a gradient-based guidance to detect DoS and quantify the strengths of SC vulnerabilities. For debugging, the project explores causally guided statistical methods to localize the root causes and guide an optimal mitigation policy. The project team will make a concerted effort to increase participation of women, Hispanic, and other underrepresented communities via special topic courses, research experiences for undergraduates, and summer camps for K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang Tan其他文献

Structural Optimization of Heat Sink for Thermoelectric Conversion Unit in Personal Comfort System
个人舒适系统热电转换单元散热器结构优化
  • DOI:
    10.3390/en15082781
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Wenping Xue;Xiao Cao;Guangfa Zhang;Gang Tan;Zilong Liu;Kangji Li
  • 通讯作者:
    Kangji Li
A state of the art review on the prediction of building energy consumption using data-driven technique and evolutionary algorithms
使用数据驱动技术和进化算法预测建筑能耗的最新技术综述
Quantifying and Mitigating Cache Side Channel Leakage with Differential Set
使用差分集量化和减轻缓存侧通道泄漏
Certified Parsing of Dependent Regular Grammars
依赖正则语法的认证解析
Size-dependent radiative cooling power of glass-polymer metafilms
玻璃-聚合物超薄膜的尺寸依赖辐射冷却功率
  • DOI:
    10.1016/j.matdes.2025.114095
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Wenhui Xie;Zhenyu Fan;Gang Tan;Ronggui Yang;Yujie Wei
  • 通讯作者:
    Yujie Wei

Gang Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang Tan', 18)}}的其他基金

SaTC: CORE: Small: Precise and Robust Binary Reverse Engineering and its Applications
SaTC:核心:小型:精确而鲁棒的二进制逆向工程及其应用
  • 批准号:
    2243632
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
CAPA: Collaborative Research: Lightweight Abstract Memory Features
CAPA:协作研究:轻量级抽象内存功能
  • 批准号:
    1723571
  • 财政年份:
    2017
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
CAREER: User-Space Protection Domains for Compositional Information Security
职业:组合信息安全的用户空间保护域
  • 批准号:
    1624124
  • 财政年份:
    2016
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Reusable Tools for Formal Modeling of Machine Code
SHF:小型:协作研究:用于机器代码形式化建模的可重用工具
  • 批准号:
    1624125
  • 财政年份:
    2016
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Retrofitting Software for Defense-in-Depth
TWC:中:协作:改进纵深防御软件
  • 批准号:
    1624126
  • 财政年份:
    2016
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Retrofitting Software for Defense-in-Depth
TWC:中:协作:改进纵深防御软件
  • 批准号:
    1408826
  • 财政年份:
    2014
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Reusable Tools for Formal Modeling of Machine Code
SHF:小型:协作研究:用于机器代码形式化建模的可重用工具
  • 批准号:
    1217710
  • 财政年份:
    2012
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
CAREER: User-Space Protection Domains for Compositional Information Security
职业:组合信息安全的用户空间保护域
  • 批准号:
    1149211
  • 财政年份:
    2012
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
TC: Small: Collaborative Research: Securing Multilingual Software Systems
TC:小型:协作研究:保护多语言软件系统
  • 批准号:
    0915157
  • 财政年份:
    2009
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
  • 批准号:
    0812073
  • 财政年份:
    2008
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了