Collaborative Research: Simultaneous Contour Grouping and Medial Axis Estimation

协作研究:同时轮廓分组和中轴估计

基本信息

  • 批准号:
    0812118
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

With the ever faster growing number of images and videos, the main bottleneck in extracting the information contained in them is their analysis (indexing) and retrieval. Nowadays image and video search engines are based on textual descriptions, since visual cues are at too low level to provide useful retrieval results when dealing with a large variety of images and videos. For example, if a human submits a query image with the request to find similar images, she focuses on a certain object or a group of objects in the query image. Thus, the meaning of similarity is given by the images that contain similar objects. Therefore, extraction of objects in images (and videos) is a key factor for true progress in content based image/video retrieval (CBIR). However, object extraction belongs to unsolved problems in Computer Vision (CV). This fact led to the development of a huge number of approaches that try to do CBIR without object extraction. However, although such approaches may be successful in some restricted application domains, in which case low level features may be sufficient to replace object extraction, they have not been successful in general purpose CBIR. The PIs believe solving the object extraction problem will lead to a breakthrough in CBIR. Therefore, the PIs propose to work on object extraction in images. There have been a large number of attempts to solve the object extraction problem in CV, and none provided a satisfactory solution. Why will our approach provide a good solution? A new methodology and a computation framework proposed by the PIs provide solid evidence that the breakthrough in object extraction is possible. On the cognitive and geometric modeling side, the PIs propose to use a higher level knowledge of shape similarity and a mid level knowledge of local and global symmetry as cognitively motivated constraints for object extraction. Constraints are essential because object extraction is known to be an ill-posed inverse problem. The human visual system solves this problem very well and we are getting close to a full understanding of how this is done. On the computational side, the PIs propose a new framework for a simultaneous estimation of medial axes and the contours. The proposed approach is inspired by the SLAM (Simultaneous Localization and Mapping) approaches in the field of robot mapping. Recent breakthrough solutions in robot mapping are based on the SLAM computation with particle filters. SLAM computation iterates over the processes of localization of the robot in the existing partial map (trajectory estimation), followed by a map update based on new observations and the estimated trajectory. The PIs treat the medial axis as trajectory of a virtual robot and the partial boundary as the map that is composed of edge segments associated with the medial axis. A first successful application of this framework is demonstrated by the PIs in the preliminary results.Project URL: http://knight.cis.temple.edu/~shape/
随着图像和视频数量的快速增长,提取其中包含的信息的主要瓶颈是它们的分析(索引)和检索。现在的图像和视频搜索引擎是基于文本描述,因为视觉线索是在太低的水平,提供有用的检索结果时,处理大量的各种图像和视频。例如,如果一个人提交了一个查询图像,请求找到类似的图像,她专注于查询图像中的某个对象或一组对象。因此,相似性的含义由包含相似对象的图像给出。因此,图像(和视频)中对象的提取是基于内容的图像/视频检索(CBIR)取得真正进展的关键因素。然而,目标提取属于计算机视觉(CV)中尚未解决的问题。这一事实导致了大量方法的发展,这些方法试图在没有对象提取的情况下进行CBIR。然而,虽然这种方法可能是成功的,在一些有限的应用领域,在这种情况下,低级别的功能可能足以取代对象提取,他们还没有成功的通用CBIR。PI相信解决对象提取问题将导致CBIR的突破。因此,PI建议在图像中进行对象提取。已经有大量的尝试来解决CV中的对象提取问题,但没有一个提供令人满意的解决方案。为什么我们的方法会提供一个好的解决方案?PI提出的一种新的方法和计算框架提供了坚实的证据,表明对象提取的突破是可能的。在认知和几何建模方面,PI建议使用形状相似性的更高层次的知识和局部和全局对称性的中级知识作为对象提取的认知动机约束。约束是必不可少的,因为对象提取是一个不适定的逆问题。人类的视觉系统很好地解决了这个问题,我们正在接近全面了解这是如何做到的。在计算方面,PI提出了一个新的框架,同时估计中轴和轮廓。所提出的方法的灵感来自SLAM(同时定位和地图)方法在机器人地图领域。最近机器人地图的突破性解决方案是基于粒子滤波器的SLAM计算。SLAM计算迭代机器人在现有部分地图中的定位过程(轨迹估计),然后基于新的观察和估计的轨迹进行地图更新。PI将中轴视为虚拟机器人的轨迹,将部分边界视为由与中轴相关联的边缘段组成的地图。初步结果中的PI展示了该框架的首次成功应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Longin Jan Latecki其他文献

Using spatiotemporal blocks to reduce the uncertainty in detecting and tracking moving objects in video
使用时空块减少检测和跟踪视频中移动对象的不确定性
  • DOI:
    10.1504/ijista.2006.009914
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Longin Jan Latecki;V. Megalooikonomou;Roland Miezianko;D. Pokrajac
  • 通讯作者:
    D. Pokrajac
UITI2007-University Information Technical Interchange Review Meeting
UITI2007-高校信息技术交流评审会
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Franques;Roger Williams;S. Schubert;J. Bloch;A. Ostrogorsky;A. Burger;Zhong He;J. Derby;Kelvin G. Lynn;J. D. Pruneda;D. McGregor;P. Lucas;K. Richardson;S. Hauck;K. Webb;M. Richardson;S. Sharpe;L. Carin;G. Wolberg;J. Gunther;T. Moon;Longin Jan Latecki;S. Balkır;I. Paschalidis;A. Garrett;G. Tepper;Z. Pizlo;G. Williams;J. Ryan;A. Maccabe;Jun Qi;M. Hoffman
  • 通讯作者:
    M. Hoffman
Graph and Subspace Learning for Domain Adaptation
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Longin Jan Latecki
  • 通讯作者:
    Longin Jan Latecki
Semi-Supervised Learning on an Augmented Graph with Class Labels
带有类标签的增强图的半监督学习
Homeomorphic digitization, correction and compression of digital documents
数字文档的同态数字化、校正和压缩

Longin Jan Latecki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Longin Jan Latecki', 18)}}的其他基金

RI:Small: Learning shape features with deep neural networks
RI:Small:使用深度神经网络学习形状特征
  • 批准号:
    1814745
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Object and Activity Recognition as the Maximum Weight Subgraph Problem with Mutual Exclusion Constraints
RI:中:协作研究:对象和活动识别作为具有互斥约束的最大权重子图问题
  • 批准号:
    1302164
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
EAGER: Solving Markov Random Fields with Mutual Exclusion Constraints
EAGER:求解具有互斥约束的马尔可夫随机场
  • 批准号:
    1257024
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CDI-Type II: Collaborative Research: Perception of Scene Layout by Machines and Visually Impaired Users
CDI-Type II:协作研究:机器和视障用户对场景布局的感知
  • 批准号:
    1027897
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Recovery of 3D Shapes from Single Views
合作研究:从单一视图恢复 3D 形状
  • 批准号:
    0924164
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: From Edge Pixels to Recognition of Parts of Object Contours
协作研究:从边缘像素到物体轮廓部分的识别
  • 批准号:
    0534929
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
US-Germany Cooperative Research: Robot Localization and Robot Mapping Based on Shape Matching
美德合作研究:基于形状匹配的机器人定位与机器人建图
  • 批准号:
    0331786
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Japan-Germany collaborative research toward simultaneous real-time imaging of cancer pathology and radiotherapy effects
日德合作研究癌症病理和放射治疗效果同步实时成像
  • 批准号:
    23KK0206
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Collaborative Research: Design and mechanistic studies on microenvironment-sensitive polymeric nanoparticles for simultaneous contents release and ultrasound imaging
合作研究:微环境敏感聚合物纳米粒子的设计和机理研究,用于同时释放内容物和超声成像
  • 批准号:
    2322963
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: As above so below: Quantifying the role of simultaneous LLSVPs and continents on Earth's cooling history using numerical simulations of mantle convection
合作研究:如上所述,如下:使用地幔对流数值模拟来量化同时发生的 LLSVP 和大陆对地球冷却历史的作用
  • 批准号:
    2310324
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: As above so below: Quantifying the role of simultaneous LLSVPs and continents on Earth's cooling history using numerical simulations of mantle convection
合作研究:如上所述,如下:使用地幔对流数值模拟来量化同时发生的 LLSVP 和大陆对地球冷却历史的作用
  • 批准号:
    2310325
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and mechanistic studies on microenvironment-sensitive polymeric nanoparticles for simultaneous contents release and ultrasound imaging
合作研究:微环境敏感聚合物纳米粒子的设计和机理研究,用于同时释放内容物和超声成像
  • 批准号:
    2322964
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Hydrothermal Treatment as a Strategy for Simultaneous PFAS Destruction and Recovery of Energy and Nutrients from Wastewater Residual Solids
合作研究:ERASE-PFAS:水热处理作为同时破坏 PFAS 并从废水残留固体中回收能量和养分的策略
  • 批准号:
    2207191
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Architecture Innovations for Enabling Simultaneous Translation at the Edge
合作研究:SHF:小型:支持边缘同步翻译的架构创新
  • 批准号:
    2223484
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Architecture Innovations for Enabling Simultaneous Translation at the Edge
合作研究:SHF:小型:支持边缘同步翻译的架构创新
  • 批准号:
    2223483
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Hydrothermal Treatment as a Strategy for Simultaneous PFAS Destruction and Recovery of Energy and Nutrients from Wastewater Residual Solids
合作研究:ERASE-PFAS:水热处理作为同时破坏 PFAS 并从废水残留固体中回收能量和养分的策略
  • 批准号:
    2207235
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Cognitive-IoV with Simultaneous Sensing and Communications via Dynamic RF Front End
合作研究:SWIFT:通过动态射频前端实现同步传感和通信的认知车联网
  • 批准号:
    2128570
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了