Collaborative Research: From Edge Pixels to Recognition of Parts of Object Contours
协作研究:从边缘像素到物体轮廓部分的识别
基本信息
- 批准号:0534929
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Object recognition in Computer Vision, though being a main processing step in many tasks of robotics, surveillance, and other fields of automation, is still an unsolved problem. The recent results in human visual perception strongly suggest that contour extraction is a key step to object recognition. A development of a contour-based system for object recognition is proposed. The first step of the new approach concentrates on extraction of object contours from edge images that correspond to contours as perceived by humans. Since the extraction of complete contours may not be possible (e.g., due to occlusion), extraction is focused on meaningful parts of contours. The proposed approach uses a mixture of bottom up and top down processing for edge grouping. After each step of bottom-up processing in a pyramid architecture, top-down evaluation is applied to select the most promising grouping constellations. A promising grouping constellation is defined using cognitively motivated constraints. In accord with the cognitive simplicity principle known from Gestalt psychology, partial shape similarity will be used as a primary building block of such constraints. In accord with the newest results in human perception, grouping of edges to parts of object contours and recognition of the parts using shape similarity play a key role in object recognition. This means that object recognition is possible if only part of a contour is constructed, and the construction of the whole contour is not necessary for recognition. In particular, object recognition works in the presence of occlusion and segmentation errors. The proposed solution to the object recognition problem can make a significant step to improve the application scope of vision systems. The results of this work will be applicable to vision systems, large image databases, and video analysis systems. The proposed research to find interdependence and structural information among visual parts may lead to further understanding of human visual perception and cognition. The proposed research will provide an excellent resource for interdisciplinary work for graduate and undergraduate students in computer science and psychology. The PIs will offer courses and seminars on proposed research topics that will bring the state-of-the-art knowledge and technology to the classrooms.
计算机视觉中的目标识别,虽然是机器人,监控和其他自动化领域的许多任务的主要处理步骤,但仍然是一个未解决的问题。 人类视觉感知的最新研究结果表明,轮廓提取是物体识别的关键步骤。 提出了一种基于轮廓的物体识别系统的开发方法。 新方法的第一步集中于从边缘图像中提取对象轮廓,该边缘图像对应于人类感知的轮廓。由于完整轮廓的提取可能是不可能的(例如,由于遮挡),提取集中在轮廓的有意义的部分。所提出的方法使用自下而上和自上而下的边缘分组处理的混合。在金字塔架构中的每一步自下而上的处理之后,应用自上而下的评估来选择最有希望的分组星座。一个有前途的分组星座定义使用认知动机的约束。在符合雅阁简单性原则,从格式塔心理学,部分形状相似性将被用作这种约束的主要组成部分。根据雅阁的最新研究成果,将物体的边缘划分为轮廓的一部分,并利用形状相似性对轮廓进行识别是物体识别的关键。这意味着,如果仅构造轮廓的一部分,则对象识别是可能的,并且整个轮廓的构造对于识别是不必要的。特别地,对象识别在存在遮挡和分割错误的情况下工作。 本文提出的目标识别问题的解决方案对提高视觉系统的应用范围具有重要意义。这项工作的结果将适用于视觉系统,大型图像数据库和视频分析系统。视觉部分之间的相互依赖性和结构信息的研究可能会导致人类视觉感知和认知的进一步理解。 拟议的研究将为计算机科学和心理学的研究生和本科生提供跨学科工作的优秀资源。PI将提供课程和研讨会上提出的研究课题,将国家的最先进的知识和技术的教室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Longin Jan Latecki其他文献
Graph and Subspace Learning for Domain Adaptation
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Longin Jan Latecki - 通讯作者:
Longin Jan Latecki
UITI2007-University Information Technical Interchange Review Meeting
UITI2007-高校信息技术交流评审会
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Franques;Roger Williams;S. Schubert;J. Bloch;A. Ostrogorsky;A. Burger;Zhong He;J. Derby;Kelvin G. Lynn;J. D. Pruneda;D. McGregor;P. Lucas;K. Richardson;S. Hauck;K. Webb;M. Richardson;S. Sharpe;L. Carin;G. Wolberg;J. Gunther;T. Moon;Longin Jan Latecki;S. Balkır;I. Paschalidis;A. Garrett;G. Tepper;Z. Pizlo;G. Williams;J. Ryan;A. Maccabe;Jun Qi;M. Hoffman - 通讯作者:
M. Hoffman
Polygonal approximation of laser range data based on perceptual grouping and EM
基于感知分组和EM的激光测距数据的多边形逼近
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Longin Jan Latecki;Rolf Lakämper - 通讯作者:
Rolf Lakämper
Semi-Supervised Learning on an Augmented Graph with Class Labels
带有类标签的增强图的半监督学习
- DOI:
10.3233/978-1-61499-672-9-1571 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Nan Li;Longin Jan Latecki - 通讯作者:
Longin Jan Latecki
Using spatiotemporal blocks to reduce the uncertainty in detecting and tracking moving objects in video
使用时空块减少检测和跟踪视频中移动对象的不确定性
- DOI:
10.1504/ijista.2006.009914 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Longin Jan Latecki;V. Megalooikonomou;Roland Miezianko;D. Pokrajac - 通讯作者:
D. Pokrajac
Longin Jan Latecki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Longin Jan Latecki', 18)}}的其他基金
RI:Small: Learning shape features with deep neural networks
RI:Small:使用深度神经网络学习形状特征
- 批准号:
1814745 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Object and Activity Recognition as the Maximum Weight Subgraph Problem with Mutual Exclusion Constraints
RI:中:协作研究:对象和活动识别作为具有互斥约束的最大权重子图问题
- 批准号:
1302164 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
EAGER: Solving Markov Random Fields with Mutual Exclusion Constraints
EAGER:求解具有互斥约束的马尔可夫随机场
- 批准号:
1257024 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
CDI-Type II: Collaborative Research: Perception of Scene Layout by Machines and Visually Impaired Users
CDI-Type II:协作研究:机器和视障用户对场景布局的感知
- 批准号:
1027897 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Recovery of 3D Shapes from Single Views
合作研究:从单一视图恢复 3D 形状
- 批准号:
0924164 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Simultaneous Contour Grouping and Medial Axis Estimation
协作研究:同时轮廓分组和中轴估计
- 批准号:
0812118 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
US-Germany Cooperative Research: Robot Localization and Robot Mapping Based on Shape Matching
美德合作研究:基于形状匹配的机器人定位与机器人建图
- 批准号:
0331786 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330154 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330155 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Towards Harmonious Federated Intelligence in Heterogeneous Edge Computing via Data Migration
协作研究:SHF:中:通过数据迁移实现异构边缘计算中的和谐联邦智能
- 批准号:
2312617 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312676 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: EDGE CMT: Genomic and molecular bases of pollination syndrome evolution in monkeyflowers
合作研究:EDGE CMT:猴花授粉综合征进化的基因组和分子基础
- 批准号:
2319721 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
- 批准号:
2319711 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant