EAGER: Solving Markov Random Fields with Mutual Exclusion Constraints
EAGER:求解具有互斥约束的马尔可夫随机场
基本信息
- 批准号:1257024
- 负责人:
- 金额:$ 7.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores a new way to increase the expressive power of Markov Random Fields (MRF) while at the same time improving the computing efficiency and the quality of solutions. The research focuses on utilizing quadratic mutual exclusion constraints (QMCs) expressed in quadratic equality form. Current approaches to increasing the expressive power of MRFs face a very challenging problem of higher computing time. In contrast, this approach is able to restrict the solution search space with QMCs, which in turn not only leads to significantly better solutions but also to reduced computing time.Many problems in computer vision, including but not limited to image and video segmentation, stereo, and image restoration, object detection and recognition, tracking, and activity recognition, are formulated as optimization problems involving inference of the maximum a posteriori (MAP) solution of a Markov Random Field (MRF). QMCs are more general than mutex constraints expressed in a linear equality form. Hence QMCs offer increased expressive power to more accurately model many computer vision problems. This property is particularly important when unary and binary MRF potentials are unreliable and uninformative, which is the rule rather than an exception in real applications. Hence, this project can increase the ability of computer vision systems to broaden their application scope, ranging from image retrieval to computer vision systems on mobile robots.
本项目探索了一种新的方法来增加马尔可夫随机场(MRF)的表达能力,同时提高计算效率和解决方案的质量。研究的重点是利用二次互斥约束(QMC)表示的二次等式形式。目前的方法,以提高表达能力的MRF面临着一个非常具有挑战性的问题,更高的计算时间。相比之下,这种方法能够用QMC来限制解搜索空间,这反过来不仅导致明显更好的解,而且还减少了计算时间。计算机视觉中的许多问题,包括但不限于图像和视频分割,立体和图像恢复,对象检测和识别,跟踪和活动识别,被制定为优化问题,涉及马尔可夫随机场(MRF)的最大后验(MAP)解决方案的推断。QMC比以线性等式形式表示的互斥约束更通用。因此,QMC提供了更强的表达能力,可以更准确地建模许多计算机视觉问题。当一元和二元MRF势是不可靠的和无信息的时,这一性质特别重要,这在真实的应用中是规则而不是例外。因此,本计画可以提升电脑视觉系统的能力,以扩大其应用范围,从影像撷取到移动的机器人上的电脑视觉系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Longin Jan Latecki其他文献
Graph and Subspace Learning for Domain Adaptation
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Longin Jan Latecki - 通讯作者:
Longin Jan Latecki
UITI2007-University Information Technical Interchange Review Meeting
UITI2007-高校信息技术交流评审会
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Franques;Roger Williams;S. Schubert;J. Bloch;A. Ostrogorsky;A. Burger;Zhong He;J. Derby;Kelvin G. Lynn;J. D. Pruneda;D. McGregor;P. Lucas;K. Richardson;S. Hauck;K. Webb;M. Richardson;S. Sharpe;L. Carin;G. Wolberg;J. Gunther;T. Moon;Longin Jan Latecki;S. Balkır;I. Paschalidis;A. Garrett;G. Tepper;Z. Pizlo;G. Williams;J. Ryan;A. Maccabe;Jun Qi;M. Hoffman - 通讯作者:
M. Hoffman
Polygonal approximation of laser range data based on perceptual grouping and EM
基于感知分组和EM的激光测距数据的多边形逼近
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Longin Jan Latecki;Rolf Lakämper - 通讯作者:
Rolf Lakämper
Semi-Supervised Learning on an Augmented Graph with Class Labels
带有类标签的增强图的半监督学习
- DOI:
10.3233/978-1-61499-672-9-1571 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Nan Li;Longin Jan Latecki - 通讯作者:
Longin Jan Latecki
Using spatiotemporal blocks to reduce the uncertainty in detecting and tracking moving objects in video
使用时空块减少检测和跟踪视频中移动对象的不确定性
- DOI:
10.1504/ijista.2006.009914 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Longin Jan Latecki;V. Megalooikonomou;Roland Miezianko;D. Pokrajac - 通讯作者:
D. Pokrajac
Longin Jan Latecki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Longin Jan Latecki', 18)}}的其他基金
RI:Small: Learning shape features with deep neural networks
RI:Small:使用深度神经网络学习形状特征
- 批准号:
1814745 - 财政年份:2018
- 资助金额:
$ 7.16万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Object and Activity Recognition as the Maximum Weight Subgraph Problem with Mutual Exclusion Constraints
RI:中:协作研究:对象和活动识别作为具有互斥约束的最大权重子图问题
- 批准号:
1302164 - 财政年份:2013
- 资助金额:
$ 7.16万 - 项目类别:
Continuing Grant
CDI-Type II: Collaborative Research: Perception of Scene Layout by Machines and Visually Impaired Users
CDI-Type II:协作研究:机器和视障用户对场景布局的感知
- 批准号:
1027897 - 财政年份:2010
- 资助金额:
$ 7.16万 - 项目类别:
Standard Grant
Collaborative Research: Recovery of 3D Shapes from Single Views
合作研究:从单一视图恢复 3D 形状
- 批准号:
0924164 - 财政年份:2009
- 资助金额:
$ 7.16万 - 项目类别:
Continuing Grant
Collaborative Research: Simultaneous Contour Grouping and Medial Axis Estimation
协作研究:同时轮廓分组和中轴估计
- 批准号:
0812118 - 财政年份:2008
- 资助金额:
$ 7.16万 - 项目类别:
Standard Grant
Collaborative Research: From Edge Pixels to Recognition of Parts of Object Contours
协作研究:从边缘像素到物体轮廓部分的识别
- 批准号:
0534929 - 财政年份:2005
- 资助金额:
$ 7.16万 - 项目类别:
Continuing Grant
US-Germany Cooperative Research: Robot Localization and Robot Mapping Based on Shape Matching
美德合作研究:基于形状匹配的机器人定位与机器人建图
- 批准号:
0331786 - 财政年份:2003
- 资助金额:
$ 7.16万 - 项目类别:
Standard Grant
相似海外基金
Solving the disability data puzzle to ensure progress towards equity
解决残疾数据难题,确保在实现公平方面取得进展
- 批准号:
IE230100561 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Early Career Industry Fellowships
Solving cashflow shortfalls in the construction industry using digital payments with embedded finance
使用数字支付和嵌入式金融解决建筑行业的现金流短缺
- 批准号:
10097800 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Collaborative R&D
Solving key issues in wearable thermoelectrics for practical applications
解决可穿戴热电器件实际应用中的关键问题
- 批准号:
DE240100519 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Continuing Grant
The Science of Solving Hard Subgraph Problems
解决困难子图问题的科学
- 批准号:
EP/X030032/1 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Research Grant
CAREER: Investigating linguistic and cognitive abstractions for solving word problems in minds and machines
职业:研究语言和认知抽象以解决大脑和机器中的文字问题
- 批准号:
2339729 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Continuing Grant
Solving smoke taint: Overcoming the impacts of vineyard exposure to smoke
解决烟雾污染:克服葡萄园暴露于烟雾的影响
- 批准号:
LP210300715 - 财政年份:2023
- 资助金额:
$ 7.16万 - 项目类别:
Linkage Projects
Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
- 批准号:
23K11226 - 财政年份:2023
- 资助金额:
$ 7.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study for solving problems related to multimorbid conditions using an innovative QOL evaluation method
使用创新的生活质量评估方法解决与多病相关的问题的研究
- 批准号:
23H03127 - 财政年份:2023
- 资助金额:
$ 7.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Waste Stream Valorisation: Solving sustainable chemical production
废物流增值:解决可持续化学品生产问题
- 批准号:
2881252 - 财政年份:2023
- 资助金额:
$ 7.16万 - 项目类别:
Studentship