IMR: Development of an Atmospheric Vapor Jet Deposition Apparatus for Organic Optoelectronic Materials Research and Education

IMR:开发用于有机光电材料研究和教育的大气蒸气喷射沉积装置

基本信息

项目摘要

Technical Abstract: Organic semiconductors comprise a scientifically and technologically important class of materials, in-tensively researched for applications in electronic and optoelectronic devices. This class of materials of-fers tunable electronic/optical properties which exhibit remarkable physical properties, and can be depos-ited as high quality thin films on a variety of substrates, including low cost glass and plastic, potentially enabling cost-effective, large-area electronics and energy conversion devices. In the course of research involving organic semiconductors, exotic molecules are engineered and synthesized, and subsequently incorporated into devices. Unfortunately, exploratory synthesis yields are often low (resulting in 10-3 g quantities), and costs of device fabrication are high ( $105 for equipment). Moreover, the materials utili-zation efficiency of currently employed thin-film deposition techniques is often less than 0.01%, leading to a range of practical limitations on the pace of experimental exploration and increasing potential health hazards to the researchers. To address these problems, we will develop a Guardflow-enhanced Organic Vapor Jet Printing (G-OVJP) deposition system that allows compact and cost-effective deposition with much higher (50%+) source material utilization. The vapor jet technique employs a carrier gas to deliver source molecules onto a substrate, increasing materials utilization by bringing the sample into close proximity of a collimated source. The specially designed guard flow shields the stream of the source material from the surround-ings, thereby allowing the deposition to take place in a highly localized inert environment, potentially enabling device printing in atmosphere. The potential impact of the proposed work includes greatly reducing the cost-of-entry for organic op-toelectronics research, facilitating cross-disciplinary collaborations, enabling access to materials and mor-phologies not available via existing deposition techniques, and an accelerated pace of discovery in the realm of scientifically and technologically important organic semiconductors. Non-technical Abstract: A relatively novel class of carefully engineered organic materials derived from pigments is becoming increasingly important in science and technology. The accelerated pace and volume of research directed towards molecular organic semiconductors is motivated in large part by the ability to span a vast range of properties by means of chemical synthesis, and by the potential ability to cost-effectively fabricate futur-istic devices (e.g. ultra-thin bendable displays, efficient lighting wallpaper, plastic solar cells, health-monitoring devices, and others). Unfortunately, present research activities are severely limited by the high costs of processing equip-ment, waste of exotic new materials due to inherent inefficiencies of the laboratory-scale processing methods employed, and the serial and slow nature of experimentation imposed by the current crop of processing equipment and methods. The proposed research apparatus - Guardflow-enhanced Organic Vapor Jet Printer - will increase ma-terials utilization efficiency by orders of magnitude, free up laboratory space, reduce capital costs, im-prove safety, speed up laboratory-scale fabrication and testing of novel devices, and enhance scientific collaborations across traditional disciplinary boundaries. The benefits of this proposed work will extend beyond the research community, to undergraduate and K-12 education, by providing greatly simplified and more rewarding hands-on experiences in science and technology at the cutting edge of research in organic semiconductors and energy conversion devices.
技术摘要:有机半导体是一种重要的科学和技术材料,在电子和光电器件中的应用得到了广泛的研究。这类材料具有可调的电子/光学性质,其表现出显著的物理性质,并且可以作为高质量的薄膜沉积在各种基底上,包括低成本的玻璃和塑料,从而潜在地实现成本有效的大面积电子和能量转换器件。在涉及有机半导体的研究过程中,外来分子被设计和合成,随后被纳入设备。不幸的是,探索性合成产率通常较低(导致10-3 g的量),并且器件制造成本较高(设备成本为105美元)。此外,目前采用的薄膜沉积技术的材料利用率往往低于0.01%,导致一系列的实际限制的实验探索的速度和增加潜在的健康危害的研究人员。为了解决这些问题,我们将开发一种Guardflow增强型有机蒸汽喷射印刷(G-OVJP)沉积系统,该系统允许紧凑且具有成本效益的沉积,具有更高(50%以上)的源材料利用率。蒸汽喷射技术采用载气将源分子输送到衬底上,通过使样品靠近准直源来提高材料利用率。特别设计的保护流将源材料流与周围环境屏蔽,从而允许沉积在高度局部化的惰性环境中发生,从而可能实现在大气中的设备打印。拟议工作的潜在影响包括大大降低有机光电子研究的进入成本,促进跨学科合作,使通过现有沉积技术无法获得的材料和形态学成为可能,并加快在科学和技术上重要的有机半导体领域的发现步伐。非技术摘要:一种相对新颖的由颜料衍生的精心设计的有机材料在科学和技术中变得越来越重要。针对分子有机半导体的研究的加速步伐和数量在很大程度上是由于通过化学合成跨越广泛性质的能力,以及具有成本效益地制造未来设备的潜在能力(例如超薄可弯曲显示器,高效照明壁纸,塑料太阳能电池,健康监测设备等)。不幸的是,目前的研究活动受到加工设备的高成本、由于所采用的实验室规模加工方法的固有低效率而造成的外来新材料的浪费以及当前加工设备和方法的连续和缓慢的实验性质的严重限制。拟议的研究装置-Guardflow增强型有机蒸气喷射打印机-将使材料利用效率提高几个数量级,释放实验室空间,降低资本成本,提高安全性,加快实验室规模的制造和测试新设备,并加强跨越传统学科界限的科学合作。这项拟议工作的好处将超越研究界,扩展到本科和K-12教育,通过在有机半导体和能量转换器件研究的前沿提供大大简化和更有价值的科学和技术实践经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Max Shtein其他文献

Max Shtein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Max Shtein', 18)}}的其他基金

I-Corps: Photonic Fiber Barcodes for Integrated Textile Traceability and Sorting
I-Corps:用于集成纺织品追溯和分类的光子光纤条形码
  • 批准号:
    2325764
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EFRI DCheM: Distributed Manufacturing of Personalized Medicines
EFRI DCheM:个性化药品的分布式制造
  • 批准号:
    2029139
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RAPID: Highly Customizable, Breathable N95 Mask Design Utilizing Kirigami-enabled Filters and Sensor Platforms to Maximize Comfort and Monitor usage Patterns
RAPID:高度可定制、透气的 N95 口罩设计,利用 Kirigami 功能的过滤器和传感器平台来最大限度地提高舒适度并监控使用模式
  • 批准号:
    2034626
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: Research and Development of a Novel Printer for Small Molecular-Based Medicines That Enhances Their Dissolution Properties and Cost-Effectiveness.
PFI-TT:研究和开发用于小分子药物的新型打印机,可增强其溶出特性和成本效益。
  • 批准号:
    1827123
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
I-Corps: Kirigami solar cell development for commercial applications
I-Corps:商业应用的 Kirigami 太阳能电池开发
  • 批准号:
    1533829
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EFRI-ODISSEI: Multi-scale Origami for Novel Photonics, Energy Conversion
EFRI-ODISSEI:用于新型光子学、能量转换的多尺度折纸
  • 批准号:
    1240264
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NER: Electrically Pumped Organic Solid-State Surface Plasmon Amplifier
NER:电泵有机固态表面等离子体放大器
  • 批准号:
    0608849
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Scanning nano-OLED Probe
扫描纳米OLED探针
  • 批准号:
    0523986
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Study on tropical atmospheric disturbances by development of Equatorial Atmospheric Radar with RASS
利用RASS开发赤道大气雷达研究热带大气扰动
  • 批准号:
    23H01246
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of near-ambient-pressure low energy inverse photoelectron spectroscopy and study on atmospheric and solvent effects on unoccupied states of n-type organic semiconductors.
近环境压力低能逆光电子能谱的发展以及大气和溶剂对n型有机半导体空位态影响的研究。
  • 批准号:
    23KJ0310
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conference on Measurement of Atmospheric Mercury: Assessment of New Measurement and Calibration Methods and Development of a Path Forward; Reno, Nevada; October 11-13, 2023
大气汞测量会议:新测量和校准方法的评估以及前进道路的发展;
  • 批准号:
    2303105
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Development of the measurement, identification and quantification methods for investigating nanoplastic dynamics from terrestrial to atmospheric environments
开发用于研究从陆地到大气环境的纳米塑料动力学的测量、识别和量化方法
  • 批准号:
    22KJ1953
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of an automatic monitoring method for hazardous substance in atmospheric dust using images captured by an autonomous UAV
利用自主无人机拍摄的图像开发大气灰尘中有害物质的自动监测方法
  • 批准号:
    23K04302
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a new wound treatment with reduced HMGB1 using non-thermal atmospheric pressure plasma
使用非热常压等离子体开发减少 HMGB1 的新型伤口治疗方法
  • 批准号:
    22H03250
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Microporous structure tuning and ultrathin film formation via atmospheric-pressure plasma-enhanced CVD for the development of highly permselective silica membranes
通过大气压等离子体增强 CVD 进行微孔结构调整和超薄膜形成,用于开发高选择性渗透二氧化硅膜
  • 批准号:
    22H01851
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Development and Applications of GEOS-Chem Atmospheric Chemistry in CESM and MUSICA
合作研究:GEOS-Chem大气化学在CESM和MUSICA中的开发和应用
  • 批准号:
    2228359
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Development and Applications of GEOS-Chem Atmospheric Chemistry in CESM and MUSICA
合作研究:GEOS-Chem大气化学在CESM和MUSICA中的开发和应用
  • 批准号:
    2228379
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Development of in-situ measurement system of atmospheric carbonyl sulfide using a mid-infrared laser absorption spectrometer
中红外激光吸收光谱仪大气硫化碳原位测量系统研制
  • 批准号:
    22K12365
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了