Collaborative Research: Quantum Decision Theory

合作研究:量子决策理论

基本信息

  • 批准号:
    0817965
  • 负责人:
  • 金额:
    $ 21.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

Research on human judgment and decision making has revealed a number of paradoxical findings that have resisted explanation under a common theoretical framework. These include violations of the sure thing axiom of decision making, interactions between inferences and decisions, violations of the reduction axiom of decision making, violations of the conjunctive and disjunctive axioms of probability theory, and order effects on judgments. In the past, separate and disconnected explanations have been proposed using variants of classic decision theory. This research proposes a unifying explanation for all of these paradoxical results based on a new quantum decision theory. Classic decision theory is based on classic probability theory. Probabilities are assigned to events defined as subsets of a universal set, which obey all the laws of Boolean algebra. Quantum decision theory is based on quantum probability theory. Probabilities are assigned to events defined as subspaces of a Hilbert space, which obey all the laws of Boolean algebra except the distributive axiom. Following from the distributive axiom, classic probability theory adheres to one of its most important theorems, the law of total probability. Because quantum logic does not have to obey the distributive law, quantum probabilities do not have to obey the law of total probability. Instead, quantum probability theory must obey another law called the doubly stochastic law, which the classic probability model does not obey. Hence, the two probability theories are fundamentally different and the critical question is which set of rules provides a better description of human behavior. The immediate goal of this research is to rigorously compare decision models built upon classical probability theory with those built from quantum probability theory. To rigorously compare quantum versus classical probability models of decision making, a series of experiments will be conducted. The experiments focus on tests of the law of total probability and tests of the law of double stochasticity, where the two classes of models make major and qualitatively different predictions. The research will accomplish three objectives: (1) develop a new quantum theory of human inference and decision making, (2) conduct new empirical tests of the fundamental laws of total probability and double stochasticity using human inference and decision behavior, and (3) rigorously compare and contrast classic versus quantum models of decision making with respect to the new empirical findings. A quantum or classic model will be preferred only if it provides a superior scientific explanation of the phenomena with respect to both accuracy and parsimony.The broad and long-term goal of this research program is to break new ground and pioneer a new path by building probabilistic and dynamic systems for social and behavioral sciences from quantum rather than classical probability principles. Previously, theorists in these fields have relied on mathematical models (e.g. stochastic differential equations) based on fundamental assumptions borrowed from classical physics. What are these fundamental assumptions? Are they overly restrictive? Social and behavioral scientists also face findings that remain paradoxical from a classic probability point of view. These paradoxes suggest that measurements in these fields may not always obey the law of total probability and entail different assumptions. This program of research also will contribute to the training of students at the undergraduate, graduate, and post doctoral levels at two major state universities. In addition to student training, the investigators will make an effort to train scientists in the area quantum cognition. They have conducted a full day tutorial at the annual Cognitive Science meeting and they plan to continue these tutorials in the future. They also plan to organize a special issue on Quantum Cognition in the Journal of Mathematical Psychology. New graduate courses on quantum cognition and decision making will be prepared and presented at the graduate level, and finally, a resource web site will be developed with tutorial and reference information on quantum theory for social and behavioral sciences.
对人类判断和决策的研究揭示了一些自相矛盾的发现,这些发现拒绝在共同的理论框架下进行解释。这些问题包括违反决策的确定性公理、推论和决策之间的相互作用、违反决策的约化公理、违反概率论的合取和析取公理以及对判断的顺序影响。在过去,使用经典决策理论的变体提出了独立的和不相关的解释。这项研究基于一种新的量子决策理论,对所有这些矛盾的结果提出了统一的解释。经典决策理论是以经典概率论为基础的。概率被分配给被定义为泛集的子集的事件,这些事件遵守布尔代数的所有定律。量子决策理论是建立在量子概率理论基础上的。概率被分配给定义为希尔伯特空间的子空间的事件,这些事件遵守布尔代数的所有定律,但分配公理除外。经典概率论从分配公理出发,遵循其最重要的定理之一--全概率定律。因为量子逻辑不一定要服从分布定律,所以量子概率也不一定要服从全概率定律。相反,量子概率理论必须遵守另一个称为双随机定律的定律,而经典概率模型并不遵守这个定律。因此,这两种概率理论从根本上是不同的,关键问题是哪一套规则能更好地描述人类行为。这项研究的直接目标是严格比较建立在经典概率理论和量子概率理论基础上的决策模型。为了严格比较决策的量子概率模型和经典概率模型,将进行一系列实验。实验的重点是检验全概率定律和双随机性定律,这两类模型做出主要和定性不同的预测。这项研究将完成三个目标:(1)发展一种新的人类推理和决策的量子理论;(2)利用人类的推理和决策行为对全概率和双随机性的基本规律进行新的经验检验;(3)根据新的经验发现,严格比较经典决策模型和量子决策模型。量子或经典模型只有在精确度和简洁性方面对现象提供了卓越的科学解释时才会受到青睐。这项研究计划的广泛和长期目标是通过从量子而不是经典概率原理为社会和行为科学建立概率和动态系统来开辟新的道路。以前,这些领域的理论家依赖于基于借用经典物理学的基本假设的数学模型(例如随机微分方程式)。这些基本假设是什么?他们是不是限制太多了?从经典概率的角度来看,社会科学家和行为科学家也面临着自相矛盾的发现。这些悖论表明,在这些领域的测量可能并不总是服从全概率定律,并需要不同的假设。这一研究计划还将有助于两所主要州立大学的本科生、研究生和博士后水平的培养。除了学生培训外,研究人员还将努力培训量子认知领域的科学家。他们已经在一年一度的认知科学会议上进行了一整天的指导,他们计划在未来继续这些指导。他们还计划在《数学心理学》杂志上组织一期关于量子认知的特刊。将在研究生一级编写和介绍新的量子认知和决策研究生课程,最后将开发一个资源网站,提供社会科学和行为科学的量子理论教程和参考信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerome Busemeyer其他文献

A comparison of models for learning how to dynamically integrate multiple cues in order to forecast continuous criteria
  • DOI:
    10.1016/j.jmp.2008.01.009
  • 发表时间:
    2008-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hugh Kelley;Jerome Busemeyer
  • 通讯作者:
    Jerome Busemeyer

Jerome Busemeyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerome Busemeyer', 18)}}的其他基金

Collaborate Research: Construct a General Hilbert Space Multi-dimensional Model
合作研究:构建通用希尔伯特空间多维模型
  • 批准号:
    1560554
  • 财政年份:
    2016
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum Decision Theory
合作研究:量子决策理论
  • 批准号:
    1153726
  • 财政年份:
    2012
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating dynamic decision making with neurocontrollers by combining system and cognitive sciences
合作研究:通过系统与认知科学的结合,将动态决策与神经控制器相结合
  • 批准号:
    1002188
  • 财政年份:
    2010
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Decision Field Theory for Decision Trees
决策树的决策场论
  • 批准号:
    9796197
  • 财政年份:
    1997
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Decision Field Theory for Decision Trees
决策树的决策场论
  • 批准号:
    9602102
  • 财政年份:
    1996
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Theory of Adaptive Decision Making
适应性决策理论
  • 批准号:
    8710103
  • 财政年份:
    1987
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimizing KTaO3 Superconductivity for Quantum Applications
合作研究:优化 KTaO3 超导性以实现量子应用
  • 批准号:
    2327535
  • 财政年份:
    2023
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality
合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育
  • 批准号:
    2302817
  • 财政年份:
    2023
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了