Novel Statistical Energy Function and Its Applications to Side-chain Modeling and Fold Recognition

新颖的统计能量函数及其在侧链建模和折叠识别中的应用

基本信息

  • 批准号:
    0818353
  • 负责人:
  • 金额:
    $ 93.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

Computational methods to predict protein structure from sequence are becoming increasingly important and powerful, particularly in light of structural and functional annotation of genomic data. To improve the performance of computational algorithms, this project has three specific aims: (1) Development of an orientation-dependent statistical potential based on side-chain packing; (2) Development of a fast and accurate method for generating side-chain rotamer conformations; and (3) Development of structure profile for alignment and template identification of remote targets. Currently, the development of effective potential functions for side-chain modeling is still a challenging problem in the field. The new statistical potential function and its applications open a new path to improving the modeling of side-chains. Such a capability is vitally important for high-accuracy refinement of predicted structures, which is the most difficult step in structure prediction for the last few decades. As a faculty member for the last seven years at both Baylor College of Medicine and Rice University, the PI bears enormous educational responsibility and shares high enthusiasm for developing programs to expose underprivileged and minority students to modern computational techniques and tools of structural biology. Being in Houston, one of the largest populations of such students in the United States and having the inter-institutional appointment at both Baylor and Rice are two important factors that have dramatically enabled the PI to fulfill this important duty. The results of this research will be integrated into the extensive and on-going educational outreach activities at both Baylor and Rice and the computer programs will be made publicly available.
从序列预测蛋白质结构的计算方法变得越来越重要和强大,特别是在基因组数据的结构和功能注释方面。为了提高计算算法的性能,该项目有三个具体目标:(1)开发基于侧链堆积的与取向相关的统计势;(2)开发一种快速而准确的侧链旋转异构体构象生成方法;(3)开发用于远程目标的比对和模板识别的结构轮廓。目前,开发有效的势函数用于侧链建模仍然是该领域的一个具有挑战性的问题。新的统计势函数及其应用为改进侧链模型开辟了一条新的途径。这种能力对于预测结构的高精度精化至关重要,这是过去几十年来结构预测中最困难的一步。作为贝勒医学院和莱斯大学过去七年的教员,PI肩负着巨大的教育责任,并热衷于开发项目,让贫困和少数族裔学生接触现代结构生物学的计算技术和工具。身处美国此类学生人数最多的休斯敦,以及贝勒和莱斯的跨院校聘任,这两个重要因素极大地使PI能够履行这一重要职责。这项研究的结果将被纳入贝勒和莱斯正在进行的广泛的教育推广活动中,计算机程序将公开提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianpeng Ma其他文献

Suppressing Interference and Power Allocation over the Multi-Cell MIMO-NOMA Networks
多小区 MIMO-NOMA 网络上的干扰抑制和功率分配
  • DOI:
    10.1109/lcomm.2019.2919703
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weidong Shao;Shun Zhang;Xiushe Zhang;Jianpeng Ma;Nan Zhao
  • 通讯作者:
    Nan Zhao
Coarse-Grained Elastic Normal Mode Analysis and Its Applications in X-Ray at Moderate Resolutions Crystallographic Refinement
粗晶弹性简正模分析及其在中分辨率 X 射线晶体细化中的应用
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianpeng Ma
  • 通讯作者:
    Jianpeng Ma
Explicit Orientation Dependence in Empirical Potentials and Its Significance to Side‐Chain Modeling
  • DOI:
    10.1002/chin.201002276
  • 发表时间:
    2010-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianpeng Ma
  • 通讯作者:
    Jianpeng Ma
Modeling Protein Structures Based on Density Maps at Intermediate Resolutions
基于中间分辨率密度图的蛋白质结构建模
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianpeng Ma
  • 通讯作者:
    Jianpeng Ma
Simulated annealing using coarse grained classical dynamics: Smoluchowski dynamics in the Gaussian density approximation
使用粗粒经典动力学模拟退火:高斯密度近似中的 Smoluchowski 动力学
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Straub;Jianpeng Ma;P. Amara
  • 通讯作者:
    P. Amara

Jianpeng Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianpeng Ma', 18)}}的其他基金

CAREER - New Methods for Simulating Biomolecules of Several Microns in Length
职业生涯 - 模拟几微米长度生物分子的新方法
  • 批准号:
    0237796
  • 财政年份:
    2003
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Continuing Grant

相似海外基金

Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
  • 批准号:
    2342215
  • 财政年份:
    2024
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Continuing Grant
Statistical analysis of Japanese texts with application of analysis technique used in high energy physics
应用高能物理分析技术对日语文本进行统计分析
  • 批准号:
    23K17512
  • 财政年份:
    2023
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Statistical Theory of Energy Flow and Chemical Reactivity in Polaritonic Materials
职业:极化材料中能量流和化学反应性的统计理论
  • 批准号:
    2340746
  • 财政年份:
    2023
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Standard Grant
ERI: Enhancing Statistical Energy Analysis for Nonlinear Vibrating Structures Using Statistical Entropy
ERI:使用统计熵增强非线性振动结构的统计能量分析
  • 批准号:
    2138625
  • 财政年份:
    2022
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Continuing Grant
Novel statistical methods for opportunity detection in energy time series
能源时间序列中机会检测的新颖统计方法
  • 批准号:
    2614268
  • 财政年份:
    2021
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Studentship
Statistical Learning and Control Theory Guided Approach Toward Designing and Operating Secure, Resilient, and Energy-Efficient Large-Scale Computing Systems
统计学习和控制理论指导设计和操作安全、弹性和节能的大规模计算系统的方法
  • 批准号:
    532473-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research:CNS Core: Small: Intermittent and Incremental Inference with Statistical Neural Network for Energy-Harvesting Powered Devices
合作研究:CNS 核心:小型:利用统计神经网络对能量收集供电设备进行间歇和增量推理
  • 批准号:
    2007274
  • 财政年份:
    2020
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Standard Grant
Statistical Learning and Control Theory Guided Approach Toward Designing and Operating Secure, Resilient, and Energy-Efficient Large-Scale Computing Systems
统计学习和控制理论指导设计和操作安全、弹性和节能的大规模计算系统的方法
  • 批准号:
    532473-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: CNS Core: Small: Intermittent and Incremental Inference with Statistical Neural Network for Energy-Harvesting Powered Devices
合作研究:CNS 核心:小型:利用统计神经网络对能量收集供电设备进行间歇和增量推理
  • 批准号:
    2007302
  • 财政年份:
    2020
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Standard Grant
Strong Energy Conservation in Quantum Statistical Mechanics
量子统计力学中的强能量守恒
  • 批准号:
    490063-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 93.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了