Collaborative Research:CNS Core: Small: Intermittent and Incremental Inference with Statistical Neural Network for Energy-Harvesting Powered Devices

合作研究:CNS 核心:小型:利用统计神经网络对能量收集供电设备进行间歇和增量推理

基本信息

  • 批准号:
    2007274
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The maturation of energy-harvesting (EH) technology and the recent emergence of viable intermittent computing, which stores harvested energy in an energy storage and supports an episode of program execution, creates the opportunity to build sophisticated batteryless computing systems. This project aims to realize artificial intelligence (AI) in such batteryless devices. However, there are two main challenges: 1. most existing Deep Neural Networks (DNNs) are hard to fit in resource-constrained microcontrollers. 2. DNNs usually require multiple execution episodes to obtain one inference result and it may take indefinite amount of time due to the weak and unpredictable harvested power. To address these challenges, this project is developing multi-exit DNNs, which can output incrementally accurate inference results during each execution episode. Three tasks will be carried out to lay the technological foundation for intermittent incremental inference on EH-powered IoT devices. First, novel power trace aware compression, online pruning and adaptation algorithms will be developed to ensure efficient deployment of multi-exit DNNs on intermittently-powered devices. Second, new multi-exit statistical and incremental neural networks (MESI-NN) will be developed to further reduce the latency and improve the accuracy and energy efficiency. Third, new neural architecture search algorithms will be developed to automatically search the best MESI-NN architecture. This project will be evaluated with real system and applications such as image classification, keyword spotting, and activity recognition. Realizing AI in EH-powered batteryless devices can enable persistent, event-driven sensing capabilities in which the main device (e.g. a battery-draining camera) can remain off until awaken by the EH-powered device when it detects events of interest. The societal impact of the proposed research is to significantly extend the lifetime of sensors and devices deployed in remote areas, which will drastically benefit various consumer, business, scientific and national security applications. This project will expose students to related cutting-edge knowledge and hands-on research opportunities and elevate their competence and confidence in facing of today's highly competitive global job market. The education impact of the proposed research includes the integration of various education activities based on the resources available to the two PIs such as DAC System Design Contest; outreach for local K-12 students through Pitt’s Investing Now summer school and ND’s CS curriculum for K-12 students in Indiana; undergraduate research with emphasis on minority participation, and course integration of the research outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能量收集(EH)技术的成熟和最近可行的间歇计算的出现为构建复杂的无电池计算系统创造了机会。间歇计算将收集的能量存储在能量存储中并支持一段程序执行。该项目旨在在这种无电池设备中实现人工智能(AI)。然而,存在两个主要的挑战:1.现有的大多数深度神经网络(DNN)很难适用于资源受限的微控制器。2.DNN通常需要多次执行才能获得一个推理结果,并且由于获取的能力较弱且不可预测,可能需要不确定的时间。为了应对这些挑战,该项目正在开发多出口DNN,它可以在每个执行过程中输出增量准确的推理结果。将执行三项任务,为EH供电的物联网设备上的间歇增量推理奠定技术基础。首先,将开发新的功率跟踪感知压缩、在线修剪和自适应算法,以确保在间歇供电的设备上高效部署多出口DNN。其次,将开发新的多出口统计和增量神经网络(MESI-NN),以进一步减少延迟,提高精度和能量效率。第三,将开发新的神经结构搜索算法来自动搜索最佳的MESI-NN结构。该项目将评估与真实的系统和应用程序,如图像分类,关键字识别,和活动识别。在EH供电的无电池设备中实现人工智能可以实现持久的、事件驱动的感应功能,其中主设备(例如电池耗尽的摄像头)可以保持关闭,直到被EH供电的设备唤醒时,它检测到感兴趣的事件。拟议研究的社会影响是显著延长部署在偏远地区的传感器和设备的寿命,这将极大地造福于各种消费、商业、科学和国家安全应用。该项目将使学生接触到相关的尖端知识和实践研究机会,并提高他们面对当今竞争激烈的全球就业市场的能力和信心。拟议研究的教育影响包括基于两个私人投资机构的现有资源整合各种教育活动,如DAC系统设计大赛;通过皮特的现在投资暑期学校和ND的印第安纳州K-12学生的CS课程向本地K-12学生推广;强调少数群体参与的本科生研究,以及研究成果的课程整合。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intermittent Inference with Nonuniformly Compressed Multi-Exit Neural Network for Energy Harvesting Powered Devices
Developing a Miniature Energy-Harvesting-Powered Edge Device with Multi-Exit Neural Network
Energy-Aware Adaptive Multi-Exit Neural Network Inference Implementation for a Millimeter-Scale Sensing System
毫米级传感系统的能量感知自适应多出口神经网络推理实现
Opportunistic Communication with Latency Guarantees for Intermittently-Powered Devices
针对间歇性供电设备的具有延迟保证的机会通信
Lightweight Run-Time Working Memory Compression for Deployment of Deep Neural Networks on Resource-Constrained MCUs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingtong Hu其他文献

FlexLevel NAND Flash Storage System Design to Reduce LDPC Latency
FlexLevel NAND 闪存存储系统设计可减少 LDPC 延迟
Stack-Size Sensitive On-Chip Memory Backup for Self-Powered Nonvolatile Processors
适用于自供电非易失性处理器的堆栈大小敏感片上内存备份
Development of A Real-time POCUS Image Quality Assessment and Acquisition Guidance System
实时 POCUS 图像质量评估和采集引导系统的开发
  • DOI:
    10.48550/arxiv.2212.08624
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenge Jia;Yiyu Shi;Jingtong Hu;Lei Yang;B. Nti
  • 通讯作者:
    B. Nti
Algorithm-hardware Co-design of Attention Mechanism on FPGA Devices
FPGA器件上注意力机制的算法-硬件协同设计
Learning to Learn Personalized Neural Network for Ventricular Arrhythmias Detection on Intracardiac EGMs
学习学习用于心内 EGM 室性心律失常检测的个性化神经网络
  • DOI:
    10.24963/ijcai.2021/359
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenge Jia;Zhepeng Wang;Feng Hong;Lichuan Ping;Yiyu Shi;Jingtong Hu
  • 通讯作者:
    Jingtong Hu

Jingtong Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingtong Hu', 18)}}的其他基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Towards Unsupervised Learning on Resource Constrained Edge Devices with Novel Statistical Contrastive Learning Scheme
合作研究:CNS 核心:小型:利用新颖的统计对比学习方案在资源受限的边缘设备上实现无监督学习
  • 批准号:
    2122320
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core:Small:IMPERIAL: In-Memory Processing Enhanced Racetrack Inspired by Accessing Laterally
协作研究:CNS Core:Small:IMPERIAL:受横向访问启发的内存处理增强赛道
  • 批准号:
    2133267
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RAPID:Collaborative:Independent Component Analysis Inspired Statistical Neural Networks for 3D CT Scan Based Edge Screening of COVID-19
RAPID:协作:独立成分分析启发的统计神经网络,用于基于 3D CT 扫描的 COVID-19 边缘筛查
  • 批准号:
    2027546
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
IRES Track I: International Research Experience for Students on Non-Volatile Processor Based Self-Powered Embedded Systems
IRES Track I:基于非易失性处理器的自供电嵌入式系统学生的国际研究经验
  • 批准号:
    1827009
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Multi-level Non-volatile FPGA Synthesis to Empower Efficient Self-adaptive System Implementations
SHF:小型:协作研究:多级非易失性 FPGA 综合,实现高效自适应系统
  • 批准号:
    1820537
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CRII: CSR: Enabling Efficient Non-Volatile Processors on Energy Harvesting Powered Embedded Systems
CRII:CSR:在能量收集供电的嵌入式系统上启用高效的非易失性处理器
  • 批准号:
    1830891
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Multi-level Non-volatile FPGA Synthesis to Empower Efficient Self-adaptive System Implementations
SHF:小型:协作研究:多级非易失性 FPGA 综合,实现高效自适应系统
  • 批准号:
    1527506
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CRII: CSR: Enabling Efficient Non-Volatile Processors on Energy Harvesting Powered Embedded Systems
CRII:CSR:在能量收集供电的嵌入式系统上启用高效的非易失性处理器
  • 批准号:
    1464429
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了