Collaborative Research: CNS Core: Small: Intermittent and Incremental Inference with Statistical Neural Network for Energy-Harvesting Powered Devices
合作研究:CNS 核心:小型:利用统计神经网络对能量收集供电设备进行间歇和增量推理
基本信息
- 批准号:2007302
- 负责人:
- 金额:$ 23.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The maturation of energy-harvesting (EH) technology and the recent emergence of viable intermittent computing, which stores harvested energy in an energy storage and supports an episode of program execution, creates the opportunity to build sophisticated batteryless computing systems. This project aims to realize artificial intelligence (AI) in such batteryless devices. However, there are two main challenges: 1. most existing Deep Neural Networks (DNNs) are hard to fit in resource-constrained microcontrollers. 2. DNNs usually require multiple execution episodes to obtain one inference result and it may take indefinite amount of time due to the weak and unpredictable harvested power. To address these challenges, this project is developing multi-exit DNNs, which can output incrementally accurate inference results during each execution episode. Three tasks will be carried out to lay the technological foundation for intermittent incremental inference on EH-powered IoT devices. First, novel power trace aware compression, online pruning and adaptation algorithms will be developed to ensure efficient deployment of multi-exit DNNs on intermittently-powered devices. Second, new multi-exit statistical and incremental neural networks (MESI-NN) will be developed to further reduce the latency and improve the accuracy and energy efficiency. Third, new neural architecture search algorithms will be developed to automatically search the best MESI-NN architecture. This project will be evaluated with real system and applications such as image classification, keyword spotting, and activity recognition. Realizing AI in EH-powered batteryless devices can enable persistent, event-driven sensing capabilities in which the main device (e.g. a battery-draining camera) can remain off until awaken by the EH-powered device when it detects events of interest. The societal impact of the proposed research is to significantly extend the lifetime of sensors and devices deployed in remote areas, which will drastically benefit various consumer, business, scientific and national security applications. This project will expose students to related cutting-edge knowledge and hands-on research opportunities and elevate their competence and confidence in facing of today's highly competitive global job market. The education impact of the proposed research includes the integration of various education activities based on the resources available to the two PIs such as DAC System Design Contest; outreach for local K-12 students through Pitt’s Investing Now summer school and ND’s CS curriculum for K-12 students in Indiana; undergraduate research with emphasis on minority participation, and course integration of the research outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能量收集(EH)技术的成熟和最近出现的可行的间歇性计算(其将收集的能量存储在能量存储器中并支持程序执行的一个片段)创造了构建复杂的无电池计算系统的机会。该项目旨在在这种无电池设备中实现人工智能(AI)。然而,有两个主要的挑战:1。大多数现有的深度神经网络(DNN)难以适应资源受限的微控制器。2. DNN通常需要多个执行片段来获得一个推理结果,并且由于所获得的功率较弱且不可预测,因此可能需要不确定的时间。为了应对这些挑战,该项目正在开发多出口DNN,它可以在每个执行事件中输出增量准确的推理结果。将执行三项任务,为EH供电的物联网设备上的间歇性增量推理奠定技术基础。首先,将开发新颖的功率跟踪感知压缩、在线修剪和自适应算法,以确保多出口DNN在无源供电设备上的高效部署。其次,将开发新的多出口统计和增量神经网络(MESI-NN),以进一步减少延迟,提高准确性和能源效率。第三,将开发新的神经架构搜索算法,以自动搜索最佳MESI-NN架构。这个项目将与真实的系统和应用程序,如图像分类,关键字定位和活动识别进行评估。在EH供电的无电池设备中实现AI可以实现持久的事件驱动感测功能,其中主设备(例如电池耗尽的相机)可以保持关闭,直到EH供电的设备在检测到感兴趣的事件时唤醒。这项研究的社会影响是显著延长部署在偏远地区的传感器和设备的寿命,这将极大地有利于各种消费者,商业,科学和国家安全应用。该项目将使学生接触相关的前沿知识和实践研究机会,并提高他们面对当今竞争激烈的全球就业市场的能力和信心。拟议研究的教育影响包括根据两个PI可用的资源整合各种教育活动,例如DAC系统设计比赛;通过Pitt的Investing Now暑期学校和ND为印第安纳州的K-12学生提供的CS课程为当地K-12学生提供外展服务;本科生研究,重点是少数民族的参与,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查进行评估来支持的搜索.
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed contrastive learning for medical image segmentation
用于医学图像分割的分布式对比学习
- DOI:10.1016/j.media.2022.102564
- 发表时间:2022
- 期刊:
- 影响因子:10.9
- 作者:Wu, Yawen;Zeng, Dewen;Wang, Zhepeng;Shi, Yiyu;Hu, Jingtong
- 通讯作者:Hu, Jingtong
Lightweight Run-Time Working Memory Compression for Deployment of Deep Neural Networks on Resource-Constrained MCUs
- DOI:10.1145/3394885.3439194
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Zhepeng Wang;Yawen Wu;Zhenge Jia;Yiyu Shi;J. Hu
- 通讯作者:Zhepeng Wang;Yawen Wu;Zhenge Jia;Yiyu Shi;J. Hu
Decentralized Unsupervised Learning of Visual Representations
- DOI:10.24963/ijcai.2022/323
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Yawen Wu;Zhepeng Wang;Dewen Zeng;Meng Li;Yiyu Shi;Jingtong Hu
- 通讯作者:Yawen Wu;Zhepeng Wang;Dewen Zeng;Meng Li;Yiyu Shi;Jingtong Hu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yiyu Shi其他文献
DLBC: A Deep Learning-Based Consensus in Blockchains for Deep Learning Services
DLBC:深度学习服务区块链中基于深度学习的共识
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Boyang Li;Changhao Chenli;Xiaowei Xu;Yiyu Shi;Taeho Jung - 通讯作者:
Taeho Jung
Optimizing sequential diagnostic strategy for large-scale engineering systems using a quantum-inspired genetic algorithm: A comparative study [J]. , 2019(12). (SCI)
使用量子启发遗传算法优化大型工程系统的顺序诊断策略:比较研究[J]。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:8.7
- 作者:
Jinsong Yu;Yiyu Shi;Diyin Tang;Hao Liu;Limei Tian - 通讯作者:
Limei Tian
HS3-DPG: Hierarchical Simulation for 3-D P/G Network
HS3-DPG:3-D P/G 网络的分层仿真
- DOI:
10.1109/tvlsi.2014.2358582 - 发表时间:
2015-10 - 期刊:
- 影响因子:0
- 作者:
Yu Wang;Song Yao;Shuai Tao;Xiaoming Chen;Yuchun Ma;Yiyu Shi;Huazhong Yang - 通讯作者:
Huazhong Yang
Optimal selected phasor measurement units for identifying multiple line outages in smart grid
用于识别智能电网中多条线路停电的最佳选择相量测量单元
- DOI:
10.1109/isgt.2015.7131850 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jie Wu;Jinjun Xiong;Prasenjit Shil;Yiyu Shi - 通讯作者:
Yiyu Shi
Combating Data Leakage Trojans in Commercial and ASIC Applications With Time-Division Multiplexing and Random Encoding
利用时分复用和随机编码对抗商业和 ASIC 应用中的数据泄露木马
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.8
- 作者:
Travis E. Schulze;D. Beetner;Yiyu Shi;K. Kwiat;Charles A. Kamhoua - 通讯作者:
Charles A. Kamhoua
Yiyu Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yiyu Shi', 18)}}的其他基金
Collaborative Research: DESC: Type II: REFRESH: Revisiting Expanding FPGA Real-estate for Environmentally Sustainability Heterogeneous-Systems
合作研究:DESC:类型 II:REFRESH:重新审视扩展 FPGA 空间以实现环境可持续性异构系统
- 批准号:
2324865 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
FuSe-TG: Cross-layer Co-Design for Self-Evolving Implantable Devices
FuSe-TG:自我进化植入设备的跨层协同设计
- 批准号:
2235364 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
IRES Track I: International Research Experience for Students on Artificial Intelligence for Congenital Heart Diseases
IRES Track I:先天性心脏病人工智能学生国际研究经验
- 批准号:
2106416 - 财政年份:2021
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Towards Unsupervised Learning on Resource Constrained Edge Devices with Novel Statistical Contrastive Learning Scheme
合作研究:CNS 核心:小型:利用新颖的统计对比学习方案在资源受限的边缘设备上实现无监督学习
- 批准号:
2122220 - 财政年份:2021
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Independent Component Analysis Inspired Statistical Neural Networks for 3D CT Scan Based Edge Screening of COVID-19
RAPID:协作研究:独立成分分析启发的统计神经网络,用于基于 3D CT 扫描的 COVID-19 边缘筛查
- 批准号:
2027539 - 财政年份:2020
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
1919167 - 财政年份:2019
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Phase 1 IUCRC University of Notre Dame: Center for Alternative Sustainable and Intelligent Computing (ASIC)
第一阶段 IUCRC 圣母大学:替代可持续和智能计算中心 (ASIC)
- 批准号:
1822099 - 财政年份:2018
- 资助金额:
$ 23.03万 - 项目类别:
Continuing Grant
University of Notre Dame Planning Grant: I/UCRC for Alternative Sustainable and Intelligent Computing (ASIC)
圣母大学规划补助金:I/UCRC 替代可持续和智能计算 (ASIC)
- 批准号:
1650473 - 财政年份:2017
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
IRES: International Research Experience for Students on Design Automation of Three-Dimensional Integrated Circuits
IRES:三维集成电路设计自动化学生国际研究经验
- 批准号:
1456867 - 财政年份:2015
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
IRES: International Research Experience for Students on Design Automation of Three-Dimensional Integrated Circuits
IRES:三维集成电路设计自动化学生国际研究经验
- 批准号:
1559029 - 财政年份:2015
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 23.03万 - 项目类别:
Continuing Grant