Optimal Model Reduction for Aerodynamics Boundary Feedback Control

空气动力学边界反馈控制的最优模型简化

基本信息

  • 批准号:
    0825921
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The research objective of this proposal is to develop methods of model reduction and feedback control for aerodynamic flows, and in particular surface control of turbulent flows. The research will result in active flow control methods that are general enough to apply to nonlinear partial differential models, such as the Navier-Stokes equations that govern turbulence. The research plan progresses from the development of reduced order models for the two-dimensional Burgers? equation that govern a nonlinear convective flow, to unsteady flows governed by the Navier-Stokes equation. A systematic approach that allows surface actuation and sensing, such as in control of the air flow over an airplane wing, to appear in a natural way in the reduced models will be developed. Deliverables include methods for modeling, analysis, and design, demonstration of the methods via simulation and/or experimental measurements, and documentation of research results and engineering student education. The results of this research will provide an opportunity to integrate feedback control with active flow control with applications to drag and noise reduction, lift enhancement, and ultimately the ability to use flow control devices in place of traditional aircraft control surfaces through separation control or virtual aerodynamic shaping. Drag reduction will result in improved fuel efficiency of air and ground vehicles, and therefore increased range, loiter time, and payload. The research plan is complemented by an educational plan, with particular emphasis upon the cultivation of a diverse undergraduate and graduate population and inclusion of under-represented minorities. The plan includes improvements in essential courses and creation of undergraduate capstone design projects. Teaching techniques focus on increasing student involvement in the classroom by integrating teaching and research activities, utilizing student and mentor teams incorporating graduate and undergraduate students, and emphasizing both project-oriented integrated systems design and dissemination of results through presentations and publications.
这一建议的研究目标是发展气动流动的模型降阶和反馈控制方法,特别是湍流的表面控制方法。这项研究将产生足够普遍的主动流动控制方法,以应用于非线性偏微模型,例如控制湍流的Navier-Stokes方程。研究计划的进展是从开发二维Burgers?控制非线性对流流动的方程,到由Navier-Stokes方程控制的非定常流动。将开发一种系统的方法,允许表面激励和传感,例如在飞机机翼上方的气流控制中,以自然的方式出现在简化的模型中。交付内容包括建模、分析和设计方法,通过模拟和/或实验测量对方法进行演示,以及研究结果和工程专业学生教育的文档。这项研究的结果将提供一个机会,将反馈控制与主动流动控制相结合,应用于减阻、降噪、增强升力,并最终能够通过分离控制或虚拟气动整形来使用流动控制设备来取代传统的飞机操纵面。减阻将提高空中和地面车辆的燃油效率,从而增加航程、游荡时间和有效载荷。研究计划与教育计划相辅相成,特别强调培养多样化的本科生和研究生人口,并纳入代表性不足的少数群体。该计划包括改进基础课程和创建本科顶石设计项目。教学技术侧重于通过整合教学和研究活动,利用由研究生和本科生组成的学生和导师团队,以及强调以项目为导向的集成系统设计和通过演示和出版物传播结果,来增加学生在课堂上的参与度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seddik Djouadi其他文献

Seddik Djouadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seddik Djouadi', 18)}}的其他基金

Data-Driven Nonlinear Model Reduction with Applications to Fluid Flow Systems
数据驱动的非线性模型简化及其在流体流动系统中的应用
  • 批准号:
    2024111
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Stochastic Diffusion, Adaptive Estimation, and Prediction Models for Wireless Networked Systems
无线网络系统的随机扩散、自适应估计和预测模型
  • 批准号:
    1334094
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
  • 批准号:
    81503449
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
  • 批准号:
    30873339
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Asymmetric Gait Generation for Legged Locomotion in Complex Environments via Off-Line Model Reduction and Real-Time Optimal Control
通过离线模型简化和实时最优控制,生成复杂环境中腿部运动的不对称步态
  • 批准号:
    2128568
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
  • 批准号:
    1923145
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Optimal Model Reduction of Transport Maps with Applications to Bayesian Inference
传输图的优化模型简化及其在贝叶斯推理中的应用
  • 批准号:
    502568-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
  • 批准号:
    1923247
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
AMPS: Model Reduction for Analysis, Identification, and Optimal Design of Power Networks
AMPS:用于电力网络分析、识别和优化设计的模型简化
  • 批准号:
    1923221
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
AF: Small: Data-Driven Model Reduction for Optimal Control of Large-Scale Systems
AF:小型:用于大型系统优化控制的数据驱动模型简化
  • 批准号:
    1816219
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Optimal Model Reduction of Transport Maps with Applications to Bayesian Inference
传输图的优化模型简化及其在贝叶斯推理中的应用
  • 批准号:
    502568-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optimal Model Reduction of Transport Maps with Applications to Bayesian Inference
传输图的优化模型简化及其在贝叶斯推理中的应用
  • 批准号:
    502568-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Efficient nonlinear model reduction for improved predictive uncertainty quantification and optimal design of monitoring networks in coupled groundwater-surface water systems
有效的非线性模型简化,可改进地下水-地表水耦合系统中预测不确定性量化和监测网络的优化设计
  • 批准号:
    257317078
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grants
CAREER: Interactive Physically Based Animation and Optimal Control Using Model Reduction
职业:基于物理的交互式动画和使用模型缩减的最优控制
  • 批准号:
    1055035
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了