Data-Driven Nonlinear Model Reduction with Applications to Fluid Flow Systems
数据驱动的非线性模型简化及其在流体流动系统中的应用
基本信息
- 批准号:2024111
- 负责人:
- 金额:$ 41.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Dynamics, Control, and System Diagnostics (DCSD) project will create and investigate systematic model reduction algorithms to capture the salient features of nonlinear fluid flows. Due to the sheer scale and complexity of the governing dynamical equations, model reduction is often an imperative first step when formulating strategies to control flow behaviors. Existing reduction frameworks typically fail when nonlinear terms dominate, for instance, in applications involving high flow speeds. These new techniques will find use in a wide variety of applications, including those involving flow separation, lift enhancement, and drag reduction. The reduced models can be used for the design of aircraft and transport tankers and in the control of vehicular platoons. Consequently, results of this research will enhance national prosperity and defense. Research findings will be incorporated into educational activities to benefit students from underrepresented backgrounds.Many existing model reduction frameworks fail in fluid flow applications when nonlinear terms dominate the dynamical behavior, for instance, at high Reynolds numbers. This project aims to fill this critical gap by developing model reduction algorithms designed to capture fundamentally nonlinear behaviors that emerge in fluid flows governed by nonlinear partial differential equations. Two primary approaches are considered. The first approach investigates a global geometric model reduction framework that preserves the intrinsic partial differential equation geometry and captures geodesic distances between pairs of data points. The second uses an isostable coordinate framework that characterizes the underlying dynamics of the slowest decaying nonlinear modes that govern the behavior near either periodic or stationary solutions. Both strategies will be implemented using snapshot data so that they can be readily applied in experimental settings. Successful completion of this project will result in powerful, general frameworks for identifying suitable reduced order bases to analyze fundamentally nonlinear behaviors that emerge in partial differential equation driven fluid flow systems. Prototype problems describing nonlinear convection past obstacles, unsteady airflow in office buildings, and unsteady flows in agile micro-air vehicles will be considered.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个动态,控制和系统诊断(DCSD)项目将创建和研究系统的模型简化算法,以捕捉非线性流体流动的显着特征。由于控制动力学方程的庞大规模和复杂性,在制定控制流动行为的策略时,模型简化通常是必不可少的第一步。当非线性项占主导地位时,例如在涉及高流速的应用中,现有的简化框架通常会失败。这些新技术将在各种各样的应用中得到应用,包括涉及流动分离、升力增强和阻力减小的应用。简化后的模型可用于飞机和运输油轮的设计以及车辆排的控制。 因此,这项研究的结果将促进国家的繁荣和国防。研究结果将被纳入教育活动,以造福学生的代表性不足的background.Many现有的模型简化框架失败时,非线性项占主导地位的流体流动应用的动态行为,例如,在高雷诺数。该项目旨在通过开发模型简化算法来填补这一关键空白,该算法旨在捕获由非线性偏微分方程控制的流体流动中出现的基本非线性行为。考虑两种主要方法。第一种方法研究了一个全局几何模型简化框架,该框架保留了固有的偏微分方程几何结构,并捕获了数据点对之间的测地线距离。 第二个使用等稳坐标框架,其特征在于最慢的衰减非线性模式,管理的行为附近的周期或固定的解决方案的基本动态。这两种策略都将使用快照数据来实施,以便它们可以很容易地应用于实验环境。这个项目的成功完成将导致强大的,一般的框架,确定合适的降阶基地,从根本上分析非线性行为,出现在偏微分方程驱动的流体流动系统。 将考虑描述非线性对流通过障碍物,在办公楼非定常气流,在敏捷的微型飞行器非定常流的原型问题。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-driven inference of high-accuracy isostable-based dynamical models in response to external inputs
响应外部输入的高精度基于等稳态的动力学模型的数据驱动推理
- DOI:10.1063/5.0042874
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
Computation of Centroidal Voronoi Tessellations in High Dimensional Spaces
- DOI:10.1109/lcsys.2022.3185032
- 发表时间:2022-03
- 期刊:
- 影响因子:3
- 作者:B. Telsang;Seedik M Djouadi
- 通讯作者:B. Telsang;Seedik M Djouadi
A Note on the Optimality of Balanced Truncation for a Class of Infinite Dimensional Systems
关于一类无限维系统平衡截断最优性的注记
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:S. Djouadi
- 通讯作者:S. Djouadi
Degenerate isostable reduction for fixed-point and limit-cycle attractors with defective linearizations
具有缺陷线性化的定点和极限环吸引子的简并等稳态约简
- DOI:10.1103/physreve.103.022211
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
Data-driven identification of dynamical models using adaptive parameter sets
使用自适应参数集进行数据驱动的动力学模型识别
- DOI:10.1063/5.0077447
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wilson, Dan
- 通讯作者:Wilson, Dan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seddik Djouadi其他文献
Seddik Djouadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seddik Djouadi', 18)}}的其他基金
Stochastic Diffusion, Adaptive Estimation, and Prediction Models for Wireless Networked Systems
无线网络系统的随机扩散、自适应估计和预测模型
- 批准号:
1334094 - 财政年份:2013
- 资助金额:
$ 41.04万 - 项目类别:
Standard Grant
Optimal Model Reduction for Aerodynamics Boundary Feedback Control
空气动力学边界反馈控制的最优模型简化
- 批准号:
0825921 - 财政年份:2008
- 资助金额:
$ 41.04万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
$ 41.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
$ 41.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
- 批准号:
2308200 - 财政年份:2023
- 资助金额:
$ 41.04万 - 项目类别:
Standard Grant
Data-driven control of nonlinear systems
非线性系统的数据驱动控制
- 批准号:
2752427 - 财政年份:2022
- 资助金额:
$ 41.04万 - 项目类别:
Studentship
Methods for Nonlinear, Non-Gaussian, and Data-Driven Ensemble Data Assimilation in Large-Scale Applications
大规模应用中非线性、非高斯和数据驱动的集合数据同化方法
- 批准号:
2152814 - 财政年份:2022
- 资助金额:
$ 41.04万 - 项目类别:
Standard Grant
CAREER: A Nonlinear Model Reduction Framework for Oscillatory Systems and Associated Data-Driven Inference Strategies
职业:振荡系统的非线性模型简化框架和相关的数据驱动推理策略
- 批准号:
2140527 - 财政年份:2022
- 资助金额:
$ 41.04万 - 项目类别:
Continuing Grant
A System Behavioral Approach to Big Data-driven Nonlinear Process Control
大数据驱动的非线性过程控制的系统行为方法
- 批准号:
DP210101978 - 财政年份:2021
- 资助金额:
$ 41.04万 - 项目类别:
Discovery Projects
Data-driven model reduction of nonlinear complex systems
非线性复杂系统的数据驱动模型简化
- 批准号:
19K23517 - 财政年份:2019
- 资助金额:
$ 41.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
ATD: Algorithm, Analysis, and Prediction for Nonlinear and Non-Stationary Signals via Data-Driven Iterative Filtering Methods
ATD:通过数据驱动的迭代滤波方法对非线性和非平稳信号进行算法、分析和预测
- 批准号:
1830225 - 财政年份:2018
- 资助金额:
$ 41.04万 - 项目类别:
Continuing Grant
AF:Small: Data-Driven Dimension Reduction of Linear and Nonlinear Systems
AF:Small:数据驱动的线性和非线性系统降维
- 批准号:
1320866 - 财政年份:2013
- 资助金额:
$ 41.04万 - 项目类别:
Standard Grant














{{item.name}}会员




