Workshop: Analytic Number Theory and Diophantine Approximation
研讨会:解析数论和丢番图近似
基本信息
- 批准号:0827056
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract: This grant will help fund American students to attend a summer school in Analytic number theory and Diophantine Analysis held at the University of Ottawa, June 30-July 11, 2008. The object of the summer school is to expose young researchers to some of the latest results and techniques in analytic number theory and diophantine analysis. These areas have seen a lot of progress in recent years, with some highlights being the work of Goldston, Pintz and Yildirim on small gaps between prime numbers, and the work of Rivoal on irrationality of odd values of the Riemann zeta-function. Further, other breakthroughs such as Green and Tao's theorem on long arithmetic progressions of prime numbers relied on advances in the area of analytic number theory. The first week of the summer school will offer several introductory courses as background for beginning graduate students. The second week will then offer more advanced courses on recent developments. It is also hoped that researchers in these different, but related fields would be able to combine their ideas and insights, leading to further breakthroughs.The summer school immediately precedes a large international conference (the tenth meeting of the Canadian Number Theory Association) to be held in nearby Waterloo, Ontario. The training at the summer school should help graduate students benefit more fully from this research conference as well.The summer school supported by this NSF grant is in the area of number theory. Number theory is an area of mathematics with very old and easy-to-state problems whose solutions lie very deep, and connect very many disparate areas of mathematics. Progress in number theory has sometimes led to practical applications, such as in cryptography and in coding theory.
摘要:本奖学金将资助美国学生参加于2008年6月30日至7月11日在渥太华大学举办的解析数论和丢番图分析暑期学校。暑期学校的目的是让年轻的研究人员接触到分析数论和丢番图分析的一些最新成果和技术。近年来,这些领域取得了很大的进展,其中一些亮点是Goldston, Pintz和Yildirim关于素数之间的小间隙的工作,以及Rivoal关于黎曼ζ函数奇值的无理性的工作。此外,其他突破,如格林和陶关于素数长等差数列的定理,依赖于解析数论领域的进步。暑期学校的第一周将提供几门入门课程,作为研究生的背景。第二周将提供有关最新发展的更高级课程。也希望这些不同但相关领域的研究人员能够将他们的想法和见解结合起来,从而取得进一步的突破。暑期学校紧接在安大略省滑铁卢附近举行的大型国际会议(加拿大数论协会第十次会议)。在暑期学校的训练也应该有助于研究生从这次研究会议中更充分地受益。这个由国家科学基金资助的暑期学校是在数论领域。数论是数学的一个领域,有着非常古老且易于表述的问题,其解决方案非常深入,并将许多不同的数学领域联系在一起。数论的进步有时会导致实际应用,如密码学和编码理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kannan Soundararajan其他文献
Partial sums of the Möbius function
莫比乌斯函数的部分和
- DOI:
10.1515/crelle.2009.044 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Kannan Soundararajan - 通讯作者:
Kannan Soundararajan
The prime geodesic theorem
素数测地线定理
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Kannan Soundararajan;M. Young - 通讯作者:
M. Young
Multiplicative functions in arithmetic progressions
- DOI:
10.1007/s40316-013-0001-z - 发表时间:
2013-08-30 - 期刊:
- 影响因子:0.400
- 作者:
Antal Balog;Andrew Granville;Kannan Soundararajan - 通讯作者:
Kannan Soundararajan
A supplement to Chebotarev’s density theorem
- DOI:
10.1007/s11425-022-2141-1 - 发表时间:
2023-06-26 - 期刊:
- 影响因子:1.500
- 作者:
Gergely Harcos;Kannan Soundararajan - 通讯作者:
Kannan Soundararajan
Beyond pair correlation
超越配对相关性
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
H. Montgomery;Kannan Soundararajan - 通讯作者:
Kannan Soundararajan
Kannan Soundararajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kannan Soundararajan', 18)}}的其他基金
Topics in the Analytic Theory of $L$-functions
$L$-函数的解析理论主题
- 批准号:
0739562 - 财政年份:2007
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Topics in the Analytic Theory of $L$-functions
$L$-函数的解析理论主题
- 批准号:
0500711 - 财政年份:2005
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Eighth Conference of the Canadian Number Theory Association; June 20-25, 2004; Toronto, Canada
加拿大数论协会第八届会议;
- 批准号:
0425527 - 财政年份:2004
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
L-functions and Multiplicative Number Theory
L 函数和乘法数论
- 批准号:
0100414 - 财政年份:2001
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
相似海外基金
Analytic Number Theory at the Interface
界面上的解析数论
- 批准号:
2401106 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
- 批准号:
DP240100186 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Projects
RII Track-4:NSF: From Analytic Number Theory to Harmonic Analysis
RII Track-4:NSF:从解析数论到调和分析
- 批准号:
2229278 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
CAREER: Research in and Pathways to Analytic Number Theory
职业:解析数论的研究和途径
- 批准号:
2239681 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Research on p-adic analytic cohomology of algebraic varieties and application to number theory
代数簇的p-adic解析上同调研究及其在数论中的应用
- 批准号:
22K13899 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
- 批准号:
RGPIN-2019-04888 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Statistics and Analytic Number Theory
算术统计与解析数论
- 批准号:
RGPIN-2017-06589 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
- 批准号:
RGPIN-2019-05037 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
On the Liouville function in short intervals and further topics in analytic number theory
短区间内的刘维尔函数以及解析数论中的进一步主题
- 批准号:
567986-2022 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Postdoctoral Fellowships
Developing an alternative approach to analytic number theory
开发解析数论的替代方法
- 批准号:
RGPIN-2018-04174 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual