Semi-algebraic complexity and models for massive data set processing
海量数据集处理的半代数复杂性和模型
基本信息
- 批准号:0830626
- 负责人:
- 金额:$ 41.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on the computational complexity of problems in semi-algebraic inference and in massive data set processing, as well as on advancing the analytical techniques of multiparty communication complexity, which has been a useful tool for understanding problems in both of these areas.Semi-algebraic inference systems express sets of constraints using polynomial inequalities and use rules of inference to derive new polynomial inequalities from existing ones. They are widely used in operations research and combinatorial optimization. Part of this project is to investigate what can be derived efficiently using semi-algebraic inference, including the complexity of proofs of unsatisfiability based on semi-algebraic inference, the quality of the linear and semi-definite programming approximations for NP-hard optimization problems that can derived using known semi-algebraic inference, and the extent to which our understanding of inference over binary domains can be leveraged to yield better algorithms for classes of semi-algebraic inference over the real numbers.Networked computers have allowed the accumulation of data sets of unprecedented size. New distributed methods that process such massive data sets efficiently by giving only approximate answers are having substantial impact in practice. However, the theoretical models of massive data set processing that have been analyzed to date represent only a very limited class of methods and do not capture techniques already used in practice. Part of this research is aimed at producing and analyzing theoretical models that will allow us to understand the limitations of these methods for massive data set processing and to make better use of them.Multiparty communication complexity measures the amount of information that must be communicated between multiple participants, each having partial information about the inputs to a function, in order to compute its output. Because of its flexibility it is widely applicable to problems in computational complexity. The final goal of this project is to add to the rather limited set of techniques that can be used to analyze multiparty communication complexity with the aim goal of improving its applications to semi-algebraic inference and distributed massive data set processing.
本项目专注于半代数推理和海量数据集处理中问题的计算复杂性,以及推进多方通信复杂性的分析技术,这是理解这两个领域问题的有用工具。半代数推理系统利用多项式不等式表示约束集,并利用推理规则从已有的多项式不等式推导出新的多项式不等式。它们被广泛应用于运筹学和组合优化中。这个项目的一部分是研究使用半代数推理可以有效地推导出什么,包括基于半代数推理的不可满足性证明的复杂性,可以使用已知的半代数推理推导出的NP-hard优化问题的线性和半定规划近似的质量,我们对二元域推理的理解可以在多大程度上被用来为实数上的半代数推理类产生更好的算法。联网的计算机使空前规模的数据集得以积累。新的分布式方法通过只给出近似的答案来有效地处理如此庞大的数据集,在实践中产生了重大影响。然而,迄今为止所分析的大量数据集处理的理论模型只代表了非常有限的一类方法,并且没有捕获已经在实践中使用的技术。这项研究的一部分旨在产生和分析理论模型,使我们能够理解这些方法在处理大量数据集时的局限性,并更好地利用它们。多方通信复杂性衡量多个参与者之间必须通信的信息量,每个参与者都有关于函数输入的部分信息,以便计算其输出。由于其灵活性,它被广泛应用于计算复杂性的问题。这个项目的最终目标是增加一组相当有限的技术,可以用来分析多方通信的复杂性,目的是提高其应用到半代数推理和分布式海量数据集处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Beame其他文献
Special Issue “Conference on Computational Complexity 2008” Guest Editors’ Foreword
- DOI:
10.1007/s00037-009-0271-7 - 发表时间:
2009-06-12 - 期刊:
- 影响因子:1.000
- 作者:
Paul Beame;Amit Chakrabarti - 通讯作者:
Amit Chakrabarti
Paul Beame的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Beame', 18)}}的其他基金
AF: Small: Complexity of Representations for Inference
AF:小:推理表示的复杂性
- 批准号:
2006359 - 财政年份:2020
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
SHF: Small: Efficient Verification of Nonlinear Arithmetic
SHF:小型:非线性算术的高效验证
- 批准号:
1714593 - 财政年份:2017
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
AF: Small: Communication and Resource Tradeoffs
AF:小:通信和资源权衡
- 批准号:
1524246 - 财政年份:2015
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
AF: Small:Tradeoffs among Measures in Computational and Proof Complexity
AF:小:计算和证明复杂性措施之间的权衡
- 批准号:
1217099 - 财政年份:2012
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
AF: Large: Collaborative Research: Reliable Quantum Communication and Computation in the Presence of Noise
AF:大型:协作研究:噪声存在下的可靠量子通信和计算
- 批准号:
1111382 - 财政年份:2011
- 资助金额:
$ 41.45万 - 项目类别:
Continuing Grant
Travel Support for IEEE Symposium on Foundations of Computer Science (FOCS 2011)
IEEE 计算机科学基础研讨会 (FOCS 2011) 差旅支持
- 批准号:
1147364 - 财政年份:2011
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
Travel Support for the Symposium on Foundations of Computer Science (FOCS 2010)
计算机科学基础研讨会 (FOCS 2010) 的差旅支持
- 批准号:
1049485 - 财政年份:2010
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
AF: Small: Graph Isomorphism and Quantum Random Walks by Anyons
AF:小:图同构和任意子的量子随机游走
- 批准号:
0916400 - 财政年份:2009
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
Communication Complexity, Proof Complexity, and Approximation
通信复杂性、证明复杂性和近似
- 批准号:
0514870 - 财政年份:2005
- 资助金额:
$ 41.45万 - 项目类别:
Continuing Grant
ITR: Inference in AI, Verification, and Theory: A Unified Approach
ITR:人工智能推理、验证和理论:统一方法
- 批准号:
0219468 - 财政年份:2002
- 资助金额:
$ 41.45万 - 项目类别:
Continuing Grant
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Research Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302174 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302173 - 财政年份:2023
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/1 - 财政年份:2022
- 资助金额:
$ 41.45万 - 项目类别:
Research Grant
CAREER: Algebraic and Geometric Complexity Theory
职业:代数和几何复杂性理论
- 批准号:
2047310 - 财政年份:2021
- 资助金额:
$ 41.45万 - 项目类别:
Continuing Grant
Probabilistic and Topological methods in Real Algebraic Geometry and Computational Complexity
实代数几何和计算复杂性中的概率和拓扑方法
- 批准号:
EP/V003542/1 - 财政年份:2021
- 资助金额:
$ 41.45万 - 项目类别:
Fellowship
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
- 批准号:
2128527 - 财政年份:2021
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
- 批准号:
2128702 - 财政年份:2021
- 资助金额:
$ 41.45万 - 项目类别:
Standard Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
- 批准号:
2049180 - 财政年份:2019
- 资助金额:
$ 41.45万 - 项目类别:
Continuing Grant
Organized research on computational complexity via algebraic geometry
通过代数几何组织计算复杂性的研究
- 批准号:
17K19954 - 财政年份:2017
- 资助金额:
$ 41.45万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)