CAREER: Algebraic and Geometric Complexity Theory
职业:代数和几何复杂性理论
基本信息
- 批准号:2047310
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding the limits of efficient computation is central to the theory of computer science. These limits dictate what can be expected from the algorithms that are coded, and justify beliefs in the security of cryptography. The use of algebraic techniques (multiplication, derivatives, and beyond) is pervasive in the design of efficient computation. These techniques apply to problems inherently of an algebraic nature, as well for tasks that seemingly lack algebraic structure. This project seeks to understand the power of these techniques through two different lenses. The first aims to show how to efficiently eliminate the use of randomness in algebraic algorithms. The second aims to leverage the deep mathematical structure of algebraic algorithms to define limits on their computational power. These two aims are connected through attention to common techniques and models of algebraic computation. The project will promote study of algebraic computation in general through course design, organization of workshops, and training of undergraduate and graduate students.In particular, this project seeks to design deterministic algorithms for deciding whether a given algebraic expression simplifies to a trivial expression, a problem known as polynomial identity testing (PIT). While efficient randomized algorithms for PIT have been known for decades, developing deterministic algorithms has proven challenging. The project identifies classes of PIT problems which are both of fundamental importance and that are ripe for further progress. Deterministically solving these PIT problems would settle key challenges in the area, and also lead to new algorithms in areas outside algebraic computation. Developing such deterministic PIT algorithms is known in general to be equivalent to establishing limits on efficient algebraic computation, and as such this project seeks to establish such limits through the geometric complexity theory (GCT) program. This program has seen significant overall interest from the research community, but has seen fewer than desired results due to the high barriers to entry arising from steep mathematical prerequisites. The project offers a set of problems within this program that both are of fundamental importance, but also are concretely solvable. The selection of these problems is informed by corresponding progress made in developing deterministic PIT algorithms, and as such the two parts of the project will develop in tandem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解有效计算的极限是计算机科学理论的核心。 这些限制决定了可以从编码的算法中期望什么,并证明了密码学安全性的信念。 代数技术(乘法、导数等)的使用在高效计算的设计中很普遍。 这些技术适用于本质上具有代数性质的问题,以及似乎缺乏代数结构的任务。 这个项目试图通过两个不同的镜头来理解这些技术的力量。 第一个目的是展示如何有效地消除代数算法中的随机性。 第二个目标是利用代数算法的深层数学结构来定义其计算能力的限制。 这两个目标是通过关注代数计算的常见技术和模型连接起来的。 本项目将通过课程设计、研讨会的组织、本科生和研究生的培养等,促进代数计算的一般性研究。特别是,本项目旨在设计确定性算法,以确定给定的代数表达式是否简化为平凡表达式,这一问题被称为多项式恒等式测试(PIT)。 虽然用于PIT的有效随机算法已经存在了几十年,但开发确定性算法已被证明具有挑战性。 该项目确定类的PIT问题,这是根本的重要性,是成熟的进一步的进展。 确定性地解决这些PIT问题将解决该领域的关键挑战,并在代数计算之外的领域产生新的算法。 开发这种确定性PIT算法通常被认为等同于建立有效代数计算的限制,因此本项目试图通过几何复杂性理论(GCT)程序建立这种限制。 该计划已经看到了显着的整体兴趣,从研究界,但已经看到了低于预期的结果,由于高门槛进入所产生的陡峭的数学先决条件。 该项目提供了一系列问题,在这个程序中,这两个都是根本的重要性,但也是具体的解决方案。 这些问题的选择是根据确定性PIT算法开发的相应进展而确定的,因此项目的两个部分将同步发展。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ideals, determinants, and straightening: proving and using lower bounds for polynomial ideals
- DOI:10.1145/3519935.3520025
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Robert Andrews;Michael A. Forbes
- 通讯作者:Robert Andrews;Michael A. Forbes
On Matrix Multiplication and Polynomial Identity Testing
关于矩阵乘法和多项式恒等性检验
- DOI:10.1109/focs54457.2022.00041
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Andrews, Robert
- 通讯作者:Andrews, Robert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Forbes其他文献
Benders Decomposition with Delayed Disaggregation for the Active Passive Vehicle Routing Problem
主动被动车辆路径问题的延迟分解 Benders 分解
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Yannik Rist;Christian Tilk;Michael Forbes - 通讯作者:
Michael Forbes
The Value of Drilling—A Chance-Constrained Optimization Approach
- DOI:
10.1007/s42461-024-01061-8 - 发表时间:
2024-08-22 - 期刊:
- 影响因子:2.000
- 作者:
Rick Jeuken;Michael Forbes - 通讯作者:
Michael Forbes
Pupil-sparing third nerve palsies and hemiataxia: Claude’s and reverse Claude’s syndrome
- DOI:
10.1016/j.jocn.2015.12.010 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:
- 作者:
James R. Bateman;Pavan Murty;Michael Forbes;Kisha Young Collier;Danoushka Tememe;Octavio de Marchena;William J. Powers - 通讯作者:
William J. Powers
Augmentation of CFTR maturation by S-nitrosoglutathione reductase 1 2
S-亚硝基谷胱甘肽还原酶促进 CFTR 成熟 1 2
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Zaman;Victoria Sawczak;Atiya Zaidi;Maya Butler;Deric Bennett;Paulina;Getsy;Maryam Zeinomar;Zivi Greenberg;Michael Forbes;Shagufta Rehman;Vinod;Jyothikumar;Kimberly Deronde;A. Sattar;Laura A. Smith;Deborah A. Corey;Adam;Straub;F. Sun;L. Palmer;A. Periasamy;S. Randell;T. Kelley;S. Lewis;B. Gaston - 通讯作者:
B. Gaston
IN GOLF PUTTING Examining visual and attentional focus influences on golf putting performance using a dual-task paradigm
在高尔夫推杆中使用双任务范例检查视觉和注意力焦点对高尔夫推杆表现的影响
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Michael Forbes - 通讯作者:
Michael Forbes
Michael Forbes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Forbes', 18)}}的其他基金
Compressible Turbulence from Quantum to Classical
从量子到经典的可压缩湍流
- 批准号:
2309322 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Quantum Simulation of Turbulence with Cold Atoms
冷原子湍流的量子模拟
- 批准号:
2012190 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CRII: AF: Linear-Algebraic Pseudorandomness
CRII:AF:线性代数伪随机性
- 批准号:
1755921 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Challenges in Unconditional Pseudorandomness for Boolean Computation
AF:小:布尔计算无条件伪随机性的挑战
- 批准号:
1814788 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The geometric and algebraic properties of 4-manifolds
4-流形的几何和代数性质
- 批准号:
2891032 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
- 批准号:
23K17298 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
LEAPS-MPS: Combinatorics from an Algebraic and Geometric Lens
LEAPS-MPS:代数和几何透镜的组合学
- 批准号:
2211379 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
- 批准号:
RGPIN-2018-03880 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
- 批准号:
DDG-2022-00024 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Development Grant
Questions in Algebraic and Geometric Combinatorics
代数和几何组合问题
- 批准号:
2153897 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
- 批准号:
2135960 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant