The Geometry, Topology and Combinatorics of Hamiltonian Lie Group Actions
哈密顿李群作用的几何、拓扑和组合
基本信息
- 批准号:0835507
- 负责人:
- 金额:$ 6.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-15 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0604807Principal Investigator: Tara S. HolmThe principal investigator's principal focus in this proposal is groupactions and reduction in symplectic geometry. A fundamental problemin symplectic geometry is to relate the geometry and topology of aHamiltonian system to the combinatorics of the moment polytope, andvice versa. The principal players on the geometric side include thesymplectic manifold itself and its symplectic reductions.Combinatorially, the vertices, edges, k-dimensional faces, and eventhe chambers of the moment polytope play a significant role.Generically, a symplectic reduction has orbifold singularities. Theprincipal investigator outlines a program towards understanding thegeometry and topology of such orbifolds. These results will provideinsight into the structure of the Chen-Ruan orbifold cohomology ring,yielding information about orbifold Gromov-Witten invariants. Thiswork has also naturally led to foundational questions regarding groupactions on orbifolds. Finally, the PI will distill the geometry andtopology of the Hamiltonian system into combinatorial data associatedto the moment polytope. This will shed new light on recentcombinatorial results concerning intervals in the Bruhat order on anyCoxeter group.Symplectic geometry is the mathematical framework for describingphenomena in mathematical physics, from classical mechanics to stringtheory. The moment map is an important tool that translates thesymmetries of a physical system into discrete data. An expert insymplectic geometry, the PI will achieve a deeper understanding of therelationship between the geometry of a symplectic manifold and thecombinatorics of the moment map data. Her work will shed light onstringy invariants in this context. The proposed activities willadvance our knowledge in the fields of symplectic geometry andcombinatorics, with applications to algebraic geometry, algebraictopology and mathematical physics. The PI's broader objectivesinclude increasing the participation and visibility of women inresearch mathematics, and enhancing the undergraduate experience inmathematics.
摘要奖:DMS-0604807主要研究者:塔拉S. HolmThe首席研究员的主要重点是在这个建议是groupaction和减少辛几何。 辛几何的一个基本问题是将哈密顿系统的几何和拓扑与矩多面体的组合学联系起来,反之亦然。 几何方面的主要参与者包括辛流形本身及其辛约化。从组合上讲,矩多面体的顶点,边,k维面,甚至腔室都起着重要作用。一般来说,辛约化具有轨道奇点。 首席研究员概述了一个程序,以了解这种orbifolds的几何形状和拓扑结构。 这些结果将提供深入了解的Chen-Ruan orbifold上同调环的结构,产生有关orbifold Gromov-Witten不变量的信息。 这项工作也自然地导致了关于orbifolds上的群体作用的基础问题。 最后,PI将把哈密顿系统的几何和拓扑提取成与矩多面体相关联的组合数据。 这将为最近关于任何Coxeter群上Bruhat阶区间的组合结果提供新的线索。辛几何是描述从经典力学到弦理论的数学物理现象的数学框架。 矩图是将物理系统的对称性转化为离散数据的重要工具。 作为辛几何的专家,PI将更深入地理解辛流形几何与矩图数据组合之间的关系。 她的工作将揭示在这种情况下的stringy不变量。 所提出的活动将推进我们在辛几何和组合学领域的知识,并将其应用于代数几何、代数拓扑和数学物理。 PI的更广泛的目标包括增加女性在数学研究中的参与和可见度,并提高数学本科生的经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tara Holm其他文献
Tara Holm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tara Holm', 18)}}的其他基金
Collaborative Research: NSF-BSF: Equivariant Symplectic Geometry
合作研究:NSF-BSF:等变辛几何
- 批准号:
2204360 - 财政年份:2022
- 资助金额:
$ 6.71万 - 项目类别:
Standard Grant
Momentum Maps in Symplectic, Algebraic, and Discrete Geometry
辛、代数和离散几何中的动量图
- 批准号:
1711317 - 财政年份:2017
- 资助金额:
$ 6.71万 - 项目类别:
Standard Grant
Momentum maps in symplectic, algebraic and discrete geometry
辛、代数和离散几何中的动量图
- 批准号:
1206466 - 财政年份:2012
- 资助金额:
$ 6.71万 - 项目类别:
Standard Grant
Conference on Mathematical Physics and Geometric Analysis
数学物理与几何分析会议
- 批准号:
0758479 - 财政年份:2008
- 资助金额:
$ 6.71万 - 项目类别:
Standard Grant
The Geometry, Topology and Combinatorics of Hamiltonian Lie Group Actions
哈密顿李群作用的几何、拓扑和组合
- 批准号:
0604807 - 财政年份:2006
- 资助金额:
$ 6.71万 - 项目类别:
Standard Grant
相似海外基金
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 6.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Triangulations: linking geometry and topology with combinatorics
三角测量:用组合学将几何和拓扑联系起来
- 批准号:
DP220102588 - 财政年份:2023
- 资助金额:
$ 6.71万 - 项目类别:
Discovery Projects
CAREER: Discrete Geometry at the crossroads of Combinatorics and Topology
职业:组合学和拓扑学十字路口的离散几何
- 批准号:
2237324 - 财政年份:2023
- 资助金额:
$ 6.71万 - 项目类别:
Continuing Grant
Topology and geometry of torus actions and combinatorics
环面作用和组合的拓扑和几何
- 批准号:
22K03292 - 财政年份:2022
- 资助金额:
$ 6.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Combinatorics, Geometry, Representation Theory, and Topology at University of Oregon
RTG:俄勒冈大学的组合学、几何学、表示论和拓扑学
- 批准号:
2039316 - 财政年份:2021
- 资助金额:
$ 6.71万 - 项目类别:
Continuing Grant
Geometry and topology of torus actions and combinatorics
环面作用和组合的几何和拓扑
- 批准号:
19K03472 - 财政年份:2019
- 资助金额:
$ 6.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry, Topology and Combinatorics of large random simplicial complexes
大型随机单纯复形的几何、拓扑和组合
- 批准号:
1936239 - 财政年份:2017
- 资助金额:
$ 6.71万 - 项目类别:
Studentship
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2015
- 资助金额:
$ 6.71万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2014
- 资助金额:
$ 6.71万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2013
- 资助金额:
$ 6.71万 - 项目类别:
Discovery Grants Program - Individual