Momentum Maps in Symplectic, Algebraic, and Discrete Geometry
辛、代数和离散几何中的动量图
基本信息
- 批准号:1711317
- 负责人:
- 金额:$ 18.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symplectic geometry is a broad and deep subject, with foundations in mathematical physics, that has seen much activity over the last two decades. Symplectic manifolds are spaces that carry a basic geometric structure which assigns an area to each two-dimensional plane. Because symplectic manifolds all locally `look the same', distinguishing two of them involves global properties and measurements, such as how large a ball can be embedded into the space in an area-preserving way (this is an example of a symplectic capacity). Fortunately, many symplectic manifolds have built-in symmetries, and the main focus in this project is the role of symmetries in symplectic geometry (especially, those symmetries that are organized into Hamiltonian group actions) and the quotient spaces that result when the symmetries are used to 'fold up' the manifold. A key tool in studying these symmetries is the momentum map, and in this project the PI will achieve a deeper understanding of the relationship between the geometry of a Hamiltonian system and the combinatorics of the momentum image. More broadly, the activities supported by this award will advance our knowledge in the fields of symplectic geometry and combinatorics, with applications to algebraic geometry, algebraic topology and mathematical physics. The PI will also continue to train graduate students and mentor postdocs at Cornell, as well as continue activities which have a substantial impact on the broader mathematical community and society as large, such as giving public lectures describing `big ideas' from geometry and topology, and playing significant leadership roles in professional organizations and groups that seek to improve undergraduate mathematics education across the nation.As mentioned above, Hamiltonian group actions give rise to the momentum map. This allows us to construct the symplectic reduction, which can also be described algebraically using geometric invariant theory. Pseudoholomorphic curves provide strong analytic tools to study symplectic invariants. A particularly nice package for using these tools is Hutchings' embedded contact homology (ECH). A fundamental problem in symplectic geometry is to relate the geometry and topology of a Hamiltonian system to the combinatorics of the momentum polytope, and vice versa. In the projects supported by this award, the PI will study questions about symplectic embedding problems, including symplectic capacities of toric 4-manifolds and rational ruled surfaces using ECH capacities. The PI's analysis will add to our understanding of topological invariants in equivariant symplectic geometry, including building a surjectivity and formality package for symplectic quotients, and a study of complexity one spaces. She is also writing a graduate textbook introducing students and researchers to the key aspects of the field. Finally, the PI will address a number of questions in computational toric topology. The answers will rely on tools from a variety of fields, including algebraic geometry, commutative algebra, and algebraic topology. This set of projects includes the study of toric folded symplectic manifolds, a close cousin of symplectic toric manifolds, and questions about ordinary and stringy invariants of toric orbifolds.
辛几何是一门广泛而深刻的学科,以数学物理为基础,在过去的二十年里得到了很大的活跃。辛流形是带有基本几何结构的空间,该基本几何结构为每个二维平面分配一个面积。因为辛流形在局部上看起来都是一样的,区分其中的两个流形涉及到全局性质和度量,例如一个球可以以一种面积保持的方式嵌入到空间中有多大(这是辛能力的一个例子)。幸运的是,许多辛流形都有内置的对称,这个项目的主要关注点是对称在辛几何中的作用(特别是那些被组织成哈密尔顿群作用的对称)和当对称被用于‘折叠’流形时产生的商空间。研究这些对称性的一个关键工具是动量图,在这个项目中,PI将更深入地理解哈密顿系统的几何和动量像的组合学之间的关系。更广泛地说,这个奖项支持的活动将促进我们在辛几何和组合学领域的知识,并应用于代数几何、代数拓扑学和数学物理。PI还将继续培训研究生和康奈尔大学的博士后导师,以及继续对更广泛的数学界和整个社会产生重大影响的活动,例如从几何和拓扑学出发的公开讲座,以及在寻求改善全国本科生数学教育的专业组织和团体中发挥重要的领导作用。如上所述,哈密尔顿群体行动产生动量图。这允许我们构建辛约化,它也可以用几何不变量理论进行代数描述。伪全纯曲线为研究辛不变量提供了强有力的分析工具。使用这些工具的一个特别好的包是Hutchings的嵌入接触同调(ECH)。辛几何中的一个基本问题是将哈密顿系统的几何和拓扑与动量多面体的组合数学联系起来,反之亦然。在该奖项支持的项目中,PI将研究有关辛嵌入问题的问题,包括环面4流形的辛容量和使用ECH能力的有理直纹曲面。PI的分析将加深我们对等变辛几何中的拓扑不变量的理解,包括为辛商建立满足性和形式性包,以及对复杂性一空间的研究。她还在撰写一本研究生教科书,向学生和研究人员介绍该领域的关键方面。最后,PI将解决计算环面拓扑学中的一些重要问题。答案将依赖于各种领域的工具,包括代数、几何、交换代数和代数拓扑学。这组项目包括研究环面折叠辛流形,它是辛环面流形的近亲,以及关于环面环面流形的普通不变量和弦不变量的问题。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Circle actions on symplectic four-manifolds
- DOI:10.4310/cag.2019.v27.n2.a6
- 发表时间:2015-07
- 期刊:
- 影响因子:0.7
- 作者:T. Holm;Liat Kessler
- 通讯作者:T. Holm;Liat Kessler
The equivariant cohomology of complexity one spaces
一空间复杂度的等变上同调
- DOI:10.4171/lem/65-3/4-6
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Holm, Tara;Kessler, Liat
- 通讯作者:Kessler, Liat
Mayer–Vietoris sequences and equivariant $K$-theory rings of toric varieties
MayerâVietoris 序列和复曲面变体的等变 $K$ 理论环
- DOI:10.4310/hha.2019.v21.n1.a18
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Holm, Tara S.;Williams, Gareth
- 通讯作者:Williams, Gareth
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tara Holm其他文献
Tara Holm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tara Holm', 18)}}的其他基金
Collaborative Research: NSF-BSF: Equivariant Symplectic Geometry
合作研究:NSF-BSF:等变辛几何
- 批准号:
2204360 - 财政年份:2022
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Momentum maps in symplectic, algebraic and discrete geometry
辛、代数和离散几何中的动量图
- 批准号:
1206466 - 财政年份:2012
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
The Geometry, Topology and Combinatorics of Hamiltonian Lie Group Actions
哈密顿李群作用的几何、拓扑和组合
- 批准号:
0835507 - 财政年份:2008
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Conference on Mathematical Physics and Geometric Analysis
数学物理与几何分析会议
- 批准号:
0758479 - 财政年份:2008
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
The Geometry, Topology and Combinatorics of Hamiltonian Lie Group Actions
哈密顿李群作用的几何、拓扑和组合
- 批准号:
0604807 - 财政年份:2006
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
相似国自然基金
基于MAPS单粒子瞬态响应的核应急强场辐射探测与噪声抑制并行处理方法研究
- 批准号:11905102
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于MAPS的星载硅径迹探测器及读出电子学原理研究
- 批准号:11773027
- 批准年份:2017
- 资助金额:67.0 万元
- 项目类别:面上项目
大阵列高速MAPS的压缩采样读出策略及电路架构研究
- 批准号:11705148
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
北京谱仪Ⅲ主漂移室内室改进的MAPS探测技术研究
- 批准号:U1232202
- 批准年份:2012
- 资助金额:280.0 万元
- 项目类别:联合基金项目
两栖类皮肤膜活性肽α-MAPs选择性阻抑乳腺癌MCF-7细胞生长的分子机制研究
- 批准号:30970352
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
MAPS - Models, Assessment, and Policies for Sustainability
MAPS - 可持续发展模型、评估和政策
- 批准号:
10108808 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
EU-Funded
Systems Lipidomics tools and resources for biomedical research; LIPID MAPS.
用于生物医学研究的系统脂质组学工具和资源;
- 批准号:
MR/Y000064/1 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
Research Grant
GAIA: Ground-Aerial maps Integration for increased Autonomy outdoors
GAIA:地空地图集成以增强户外自主性
- 批准号:
EP/Y003438/1 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
Research Grant
MAPS: Models, Assessment, and Policies for Sustainability
MAPS:可持续性模型、评估和政策
- 批准号:
10103115 - 财政年份:2024
- 资助金额:
$ 18.26万 - 项目类别:
EU-Funded
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: RUI: Tracing Galaxy Quenching in the Cosmic Web With Spatially-Resolved Star-Formation Maps
合作研究:RUI:用空间分辨的恒星形成图追踪宇宙网中的星系淬火
- 批准号:
2308127 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Analysis of cognitive maps and their memory generated from combinations of multi modalities.
分析多模态组合生成的认知图及其记忆。
- 批准号:
23K16962 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
REU Site: Drivers for Machine Learning and Artificial Intelligence Practices (MAPs)
REU 网站:机器学习和人工智能实践 (MAP) 的驱动因素
- 批准号:
2244580 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329854 - 财政年份:2023
- 资助金额:
$ 18.26万 - 项目类别:
Standard Grant