Rational points on varieties in families, and countable unions of varieties over countable fields
科内品种的有理点以及可数域内品种的可数并集
基本信息
- 批准号:0841321
- 负责人:
- 金额:$ 29.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will work on two projects connected with arithmeticgeometry. The first project is to study the existence of rationalpoints in algebraic families of varieties, and to build a library ofdiophantine subsets of the field of rational numbers, where adiophantine set in this context means the set of rational parametervalues for which the corresponding variety in a family has a rationalpoint. In particular, the investigator will explore families whosefibers are Chatelet surfaces or more complicated conic bundles, forwhich the Brauer-Manin obstruction produces interesting diophantinesets. A long-term goal of the first project is to construct a modelof the integers using diophantine sets, because this would disprove aconjecture of Mazur regarding topology of rational points andsimultaneously prove the undecidability of the problem of decidingwhether a multivariable polynomial equation has a rational solution.The second project is to study countable unions of subvarieties over acountable algebraically closed field, such as the field of algebraicnumbers, and in particular to prove that in naturally occurringsituations, there exists a closed point outside the countable union,as required for various constructions. Examples include the union ofrational curves in a non-uniruled variety, the moduli space locus ofabelian varieties isogenous to a Jacobian, the locus in the base of afamily of varieties where the Picard number of the fiber jumps, andunions of subvarieties arising from iteration of endomorphisms ofvarieties.Arithmetic geometry lies at the intersection of number theory andalgebraic geometry: like algebraic geometry, it studies the solutionsto multivariable polynomial equations, but it does so under thenumber-theoretic restriction that the coordinates of the solutions beintegers (whole numbers like -37) or rational numbers (fractions like-3/5) or perhaps elements of some other number system different fromthe traditional systems of real numbers or complex numbers. Suchquestions were studied for their intrinsic interest since the time ofthe ancient Greeks, and in the 20th century they found unforeseenapplications to cryptography and error-correcting codes. Theinvestigator's research focuses not on these applications, but on thefundamental questions underlying and surrounding them, such as thequestion of whether it is possible to write a computer program todecide whether an arbitrary multivariable polynomial equation has asolution in rational numbers. The research covered by this grant willstudy patterns in families of equations in the hope of deducing anegative answer, while also proving the existence of solutionssatisfying infinitely many constraints in a larger number system.
研究者将从事两个与算术和几何有关的项目. 第一个项目是研究代数簇族中有理数点的存在性,并建立有理数域的丢番图子集库,其中丢番图集是指族中相应簇族具有有理数点的有理数参数值的集合。 特别是,调查员将探讨家庭whosefields是夏特莱表面或更复杂的圆锥束,为Brauer-Manin阻塞产生有趣的diophantinesets。 第一个项目的长期目标是利用丢番图集构造整数的模型,因为这将反驳Mazur关于有理点拓扑的一个猜想,同时证明判定多元多项式方程是否有有理解的问题的不可判定性。第二个项目是研究可数代数闭域上的子簇的可数并,例如代数数域,特别是证明在自然发生的情况下,存在一个封闭点以外的可数并,作为所需的各种建设。 例子包括在非uniruled品种的分数曲线的工会,模空间轨迹abelian品种isogenous到雅可比,轨迹在家庭的基础上的品种,皮卡德数的纤维跳跃,工会的子品种所产生的自同态迭代的品种。算术几何位于数论和代数几何的交叉:像代数几何一样,它研究多变量多项式方程的解,但它是在解的坐标为整数的条件下,(整数如-37)或有理数(分数如-3/5)或可能是其他一些数字系统的元素,这些数字系统与传统的真实的数字或复数系统不同。 从古希腊时代起,人们就对这些问题进行了研究,并在世纪发现了密码学和纠错码的应用。 研究者的研究重点不是这些应用,而是它们背后和周围的基本问题,例如是否有可能编写计算机程序来确定任意多变量多项式方程是否有有理数解的问题。 这项研究将研究方程族中的模式,希望能推导出否定的答案,同时也证明在一个更大的数字系统中满足无穷多个约束的解的存在性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Introduction to Drinfeld modules
Drinfeld 模块简介
- DOI:10.1090/conm/779/15675
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Poonen, Bjorn
- 通讯作者:Poonen, Bjorn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bjorn Poonen其他文献
On constructing solutions to S-unit equations in Q ∞ ,ℓ
关于构造 Q ∞ ,ℓ 中 S 单位方程的解
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Maxim Li;Misheel Otgonbayar;Minh;Bjorn Poonen;Andrew Sutherland - 通讯作者:
Andrew Sutherland
Arithmetic and Diophantine Geometry
算术和丢番图几何
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Baker;Enrique Gonz´alez;Josep Gonz´alez;Bjorn Poonen - 通讯作者:
Bjorn Poonen
HEURISTICS FOR THE ARITHMETIC OF ELLIPTIC CURVES
椭圆曲线算术的启发式
- DOI:
10.1142/9789813272880_0060 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Bjorn Poonen - 通讯作者:
Bjorn Poonen
Packing random intervals
- DOI:
10.1007/bf01295224 - 发表时间:
1995-03-01 - 期刊:
- 影响因子:1.600
- 作者:
E. G. Coffman;Bjorn Poonen;Peter Winkler - 通讯作者:
Peter Winkler
Bjorn Poonen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bjorn Poonen', 18)}}的其他基金
Conference: The Mordell conjecture 100 years later
会议:100年后的莫德尔猜想
- 批准号:
2420166 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
Integral points on stacks, hyperplane sections over finite fields, and vectors forming rational angles
堆栈上的积分点、有限域上的超平面截面以及形成有理角的向量
- 批准号:
2101040 - 财政年份:2021
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
Graduate Workshop in Algebraic Geometry for Women and Mathematicians of Minority Genders
女性和少数族裔数学家代数几何研究生研讨会
- 批准号:
1821177 - 财政年份:2018
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
Foliation Theory in Algebraic Geometry
代数几何中的叶层理论
- 批准号:
1339299 - 财政年份:2013
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
Arithmetic of Abelian Varieties in Families
族中阿贝尔簇的算术
- 批准号:
1204946 - 财政年份:2012
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
Random maximal isotropic subspaces and Selmer groups
随机最大各向同性子空间和 Selmer 群
- 批准号:
1069236 - 财政年份:2011
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
Rational points on varieties in families, and countable unions of varieties over countable fields
科内品种的有理点以及可数域内品种的可数并集
- 批准号:
0801263 - 财政年份:2008
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
Geometric constructions over finite fields, elementary equivalence of finitely generated fields, and rational points on varieties
有限域上的几何构造、有限生成域的基本等价以及簇上的有理点
- 批准号:
0301280 - 财政年份:2003
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
Computational Aspects of Hyperelliptic Curves
超椭圆曲线的计算方面
- 批准号:
9801104 - 财政年份:1998
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
用多重假设检验方法来研究方差变点问题
- 批准号:10901010
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2021
- 资助金额:
$ 29.03万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2020
- 资助金额:
$ 29.03万 - 项目类别:
Discovery Grants Program - Individual
Explicit Methods for Finding Rational Points on Varieties
寻找品种有理点的显式方法
- 批准号:
1902199 - 财政年份:2019
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2019
- 资助金额:
$ 29.03万 - 项目类别:
Discovery Grants Program - Individual
Level Structures on K3 Surfaces, and Constrained Rational Points on Log Fano Varieties
K3 曲面上的水平结构和 Log Fano 簇上的约束有理点
- 批准号:
1902274 - 财政年份:2019
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2018
- 资助金额:
$ 29.03万 - 项目类别:
Discovery Grants Program - Individual