CAREER: Efficient Image Sparsifying Operators: Theory, Algorithms and Applications
职业:高效图像稀疏算子:理论、算法和应用
基本信息
- 批准号:0844812
- 负责人:
- 金额:$ 39.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"This award is funded under the American Recovery and Reinvestment Act of 2009(Public Law 111-5)."Many image processing applications rely on a transform or an operator to eliminate the redundancies in images, thus sparsifying the data. The need for multi-resolution makes it difficult for wavelet-like transforms to sparsify local discontinuities, while being invariant to rotations and translations without significant redundancy. The limited ability of wavelet-based sparse reconstruction algorithms to account for this redundancy limits their performance in challenging practical applications. In this context, there is a strong motivation to develop multidimensional image sparsifying operators that are invariant to translations and rotations and is competent in representing edges. This research leads to fundamental advances in several areas of multidimensional signal recovery. Specifically, the investigators apply the framework to significantly accelerate the acquisition of dynamic and spectroscopic magnetic resonance imaging (MRI) data.The main highlight of this proposal is the generalization of the gradient to obtain a new family of multidimensional operators. The use of these operators results in higher degree total variation (HD-TV) image recovery schemes that (a) are rotation and translation invariant, (b) can represent polynomials of arbitrary degree, and (c) minimize ringing artifacts. To fully exploit the power of this framework in MRI applications, the investigators also develop stable and efficient optimization algorithms and a computational scheme to derive robust sampling patterns. The proposed research projects involves a mix of theory and computation, focused on solving challenging practical problems. The research modules are tuned to provide direct, hands-on experience for graduate and undergraduate students in the processing of multidimensional image data.
这个奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。许多图像处理应用程序依赖于变换或操作符来消除图像中的冗余,从而使数据稀疏。对多分辨率的需求使得小波类变换很难稀疏局部不连续,同时在没有显著冗余的情况下对于旋转和平移是不变的。基于小波的稀疏重构算法处理这种冗余的能力有限,限制了它们在具有挑战性的实际应用中的性能。在这种背景下,人们迫切需要开发一种对平移和旋转不变并且能够表示边缘的多维图像稀疏算子。这项研究在多维信号恢复的几个领域取得了根本性的进展。具体地说,研究人员应用该框架显著加快了动态和光谱磁共振成像(MRI)数据的获取。这一提议的主要亮点是对梯度的推广,以获得一族新的多维算子。这些算子的使用导致了高次全变分(HD-TV)图像恢复方案,其(A)是旋转和平移不变的,(B)可以表示任意次数的多项式,以及(C)最小化振铃伪影。为了充分利用这一框架在磁共振成像应用中的强大功能,研究人员还开发了稳定和高效的优化算法和计算方案,以获得稳健的采样模式。拟议的研究项目涉及理论和计算的结合,侧重于解决具有挑战性的实际问题。研究模块经过调整,为研究生和本科生在处理多维图像数据方面提供直接的实践经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathews Jacob其他文献
Memory-efficient deep end-to-end posterior network (DEEPEN) for inverse problems
用于反问题的内存高效深度端到端后验网络(DEEPEN)
- DOI:
10.48550/arxiv.2402.05422 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jyothi Rikabh Chand;Mathews Jacob - 通讯作者:
Mathews Jacob
Use of Ambu aScope for tracheal intubation in anticipated difficult airway, a boon
- DOI:
10.1016/j.mjafi.2015.01.012 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Mathews Jacob;D. Vivekanand;Anoop Sharma - 通讯作者:
Anoop Sharma
Loss of a guidewire
- DOI:
10.1016/j.mjafi.2016.07.006 - 发表时间:
2017-07-01 - 期刊:
- 影响因子:
- 作者:
Mathews Jacob;S. Hasnain; Shibu - 通讯作者:
Shibu
CMR 3-95 - Accelerated Image Reconstruction in Cardiac Cine MRI: A 3D Cnn-based Modl Approach
CMR 3-95 - 心脏电影 MRI 中加速图像重建:一种基于 3D Cnn 的模型方法
- DOI:
10.1016/j.jocmr.2024.100199 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:6.100
- 作者:
Dhruba Durjoy;Mathews Jacob;Prashant Nagpal;Sarv Priya - 通讯作者:
Sarv Priya
Correlation between cerebral co-oximetry (rSO2) and outcomes in traumatic brain injury cases: A prospective, observational study.
脑血氧饱和度 (rSO2) 与创伤性脑损伤病例结果之间的相关性:一项前瞻性观察性研究。
- DOI:
10.1016/j.mjafi.2018.08.007 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mathews Jacob;M. Kale;S. Hasnain - 通讯作者:
S. Hasnain
Mathews Jacob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathews Jacob', 18)}}的其他基金
QuBBD: Collaborative Proposal: Interactive Ensemble Clustering for Mixed Data with Application to Mood Disorders
QuBBD:协作提案:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557668 - 财政年份:2015
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
CIF: Small: Adaptive signal representation for accelerated multidimensional imaging
CIF:小:用于加速多维成像的自适应信号表示
- 批准号:
1116067 - 财政年份:2011
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
CIF: Small: Adaptive signal representation for accelerated multidimensional imaging
CIF:小:用于加速多维成像的自适应信号表示
- 批准号:
1153512 - 财政年份:2011
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
相似海外基金
Efficient and Reproducible Image Annotation for Supervised Deep Learning with Small Data
用于小数据监督深度学习的高效且可重复的图像注释
- 批准号:
RGPIN-2021-02428 - 财政年份:2022
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Towards Generalizable Reasoned Deep Learning for Efficient Interpretable Medical Image Computing
迈向可泛化推理深度学习以实现高效可解释医学图像计算
- 批准号:
RGPIN-2020-06179 - 财政年份:2022
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Data-Efficient Medical Image Classification using Learned Uncertainty
使用习得不确定性进行数据高效的医学图像分类
- 批准号:
486617 - 财政年份:2022
- 资助金额:
$ 39.96万 - 项目类别:
Studentship Programs
Limited-supervision for efficient medical image understanding
有效理解医学图像的有限监督
- 批准号:
RGPIN-2020-07128 - 财政年份:2022
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
More efficient deep learning for medical image analysis
更高效的深度学习用于医学图像分析
- 批准号:
2644381 - 财政年份:2021
- 资助金额:
$ 39.96万 - 项目类别:
Studentship
Limited-supervision for efficient medical image understanding
有效理解医学图像的有限监督
- 批准号:
RGPIN-2020-07128 - 财政年份:2021
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Towards Generalizable Reasoned Deep Learning for Efficient Interpretable Medical Image Computing
迈向可泛化推理深度学习以实现高效可解释医学图像计算
- 批准号:
RGPIN-2020-06179 - 财政年份:2021
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Efficient and Reproducible Image Annotation for Supervised Deep Learning with Small Data
用于小数据监督深度学习的高效且可重复的图像注释
- 批准号:
RGPIN-2021-02428 - 财政年份:2021
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Limited-supervision for efficient medical image understanding
有效理解医学图像的有限监督
- 批准号:
DGECR-2020-00299 - 财政年份:2020
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Launch Supplement
Towards Generalizable Reasoned Deep Learning for Efficient Interpretable Medical Image Computing
迈向可泛化推理深度学习以实现高效可解释医学图像计算
- 批准号:
RGPIN-2020-06179 - 财政年份:2020
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual