CAREER: New Statistical Methods for Massive Spatial, Temporal and Spatial-Temporal Processes
职业:大规模空间、时间和时空过程的新统计方法
基本信息
- 批准号:0845368
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Dimension reduction plays an essential role in reducing the complexity of data so that the most useful information in data can be successfully extracted. Most existing dimension reduction methods are developed under the assumption that the data are independent. Consequently, they may be inefficient and sometimes even inappropriate for analyzing spatial/temporal data which are often naturally correlated. The proposed research intends to fill in this gap by developing inverse regression based dimension reduction methods for data arising from three different types of spatial/temporal processes: spatial point processes, recurrent event processes and quantitative spatial processes. Specific goals of the project include 1) developing general frameworks and methods for conducting dimension reduction for both univariate and multivariate spatial point processes and 2) generalizing these methods to the cases of recurrent event processes and quantitative spatial processes. Special attentions will be given when the dimension of the response is also high. In addition, the PI will also develop computationally efficient analytical tools such as second-order analysis for the modeling of massive recurrent event process data.With the fast development of modern data collection technologies, especially with the increased availability of more accurate Global Positioning System and Geographical Information System, large-scale spatial, temporal and spatial-temporal data have become rapidly available in recent years. Many of these data are massive and highly complex in nature, posing unprecedented challenges to data analysis. The proposed research will develop efficient statistical tools that can be used to analyze such data. The PI will collaborate closely with field scientists from various disciplines to apply these tools to solve real-life problems that have motivated this research. Specific goals of these collaborations includes, but are not limited to, 1) improving the understanding of tropical forestry diversity, 2) better assessing the health effects of air pollution on asthmatic children and 3) providing more accurate spatial predictions of US watershed characteristics such as discharges and fluxes. Key educational components of the project include providing interdisciplinary statistical trainings to students especially minority students at both the graduate and undergraduate levels and helping three local high schools improve their AP Statistics teaching.
该奖项由2009年美国复苏和再投资法案(公法111 - 5)资助。降维在降低数据复杂性方面发挥着至关重要的作用,以便成功提取数据中最有用的信息。现有的大多数降维方法都是在数据相互独立的假设下发展起来的。因此,它们可能是低效的,有时甚至不适合分析通常自然相关的空间/时间数据。拟议的研究旨在填补这一空白,开发逆回归为基础的降维方法所产生的数据从三种不同类型的空间/时间过程:空间点过程,经常性事件过程和定量空间过程。该项目的具体目标包括:1)为单变量和多变量空间点过程开发通用的降维框架和方法; 2)将这些方法推广到经常性事件过程和定量空间过程的情况。当响应的维数也很高时,将给予特别注意。随着现代数据采集技术的快速发展,特别是随着更精确的全球定位系统和地理信息系统的日益可用,近年来大规模的空间、时间和时空数据变得迅速可用。这些数据中有许多是海量且高度复杂的,给数据分析带来了前所未有的挑战。拟议的研究将开发有效的统计工具,可用于分析这些数据。PI将与来自各个学科的现场科学家密切合作,应用这些工具来解决推动这项研究的现实问题。这些合作的具体目标包括但不限于:1)提高对热带森林多样性的认识,2)更好地评估空气污染对哮喘儿童的健康影响,3)提供更准确的美国流域特征(如排放和通量)的空间预测。该项目的主要教育组成部分包括为研究生和本科生,特别是少数民族学生提供跨学科的统计培训,并帮助三所当地高中改进其AP统计教学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heping Zhang其他文献
Experimental study on fire smoke control by water mist curtain in a channel
通道内细水雾幕控制火灾烟气试验研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:13.6
- 作者:
Zhigang Wang;Xishi Wang;Yanqing Huang;Changfa Tao;Heping Zhang - 通讯作者:
Heping Zhang
On the global forcing number of hexagonal systems
关于六方晶系的全局强迫数
- DOI:
10.1016/j.dam.2013.08.020 - 发表时间:
2014 - 期刊:
- 影响因子:1.1
- 作者:
Heping Zhang;Jinzhuan Cai - 通讯作者:
Jinzhuan Cai
Some novel minimax results for perfect matchings of hexagonal systems
六角形系统完美匹配的一些新颖的极小极大结果
- DOI:
10.1016/j.dam.2022.06.017 - 发表时间:
2020-09 - 期刊:
- 影响因子:1.1
- 作者:
Xiangqian Zhou;Heping Zhang - 通讯作者:
Heping Zhang
Binary Regression for Risks in Excess of Subject‐Specific Thresholds
超过特定主题阈值的风险的二元回归
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:1.9
- 作者:
Heping Zhang;D. Zelterman - 通讯作者:
D. Zelterman
Structural analogues of the michellamine anti-HIV agents. Importance of the tetrahydroisoquinoline rings for biological activity
米歇尔明抗 HIV 药物的结构类似物。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Heping Zhang;D. Zembower;Zhidong Chen - 通讯作者:
Zhidong Chen
Heping Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heping Zhang', 18)}}的其他基金
Measure of Heterogeneity for Complex Data Objects
复杂数据对象的异构性度量
- 批准号:
2112711 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Scalable and Flexible Algorithms to Detect Structural Change in Complex Sequence Data
协作研究:可扩展且灵活的算法来检测复杂序列数据的结构变化
- 批准号:
1722544 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
- 批准号:
2340241 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
- 批准号:
2238656 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Statistical Approaches for Studying Evolutionary Processes: Inference, Attribution and Computation
职业:研究进化过程的新统计方法:推理、归因和计算
- 批准号:
2143242 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Statistical Paradigms Reconciling Empirical Surprises in Modern Machine Learning
职业:新的统计范式调和现代机器学习中的经验惊喜
- 批准号:
2042473 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards a New Synthesis of Statistical Learning and Logical Reasoning
职业:迈向统计学习和逻辑推理的新综合
- 批准号:
1943641 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Statistical Methods for Classification and Analysis of High Dimensional and Functional Data
职业:高维和功能数据分类和分析的新统计方法
- 批准号:
1812354 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A New Neat Framework for Statistical Machine Learning
职业:统计机器学习的新简洁框架
- 批准号:
1661755 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Techniques for Statistical Learning and Multivariate Analysis
职业:统计学习和多元分析新技术
- 批准号:
1554821 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A New Neat Framework for Statistical Machine Learning
职业:统计机器学习的新简洁框架
- 批准号:
1149803 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Statistical Methods for Classification and Analysis of High Dimensional and Functional Data
职业:高维和功能数据分类和分析的新统计方法
- 批准号:
1055210 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant