Collaborative Research: Scalable and Flexible Algorithms to Detect Structural Change in Complex Sequence Data
协作研究:可扩展且灵活的算法来检测复杂序列数据的结构变化
基本信息
- 批准号:1722544
- 负责人:
- 金额:$ 16.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern technologies in science and engineering generate data that become bigger in size and more complex in content. It is important and challenging to understand such data using statistical and computational methods, especially to identify trends in the data. Examples include large scale sequence data from genomics and market data from economics. In genomics, researchers search for copy number variations (CNVs) by examining hundreds of thousands of measurements of biomarkers along the whole genome. In financial engineering, it is useful to identify and interpret abrupt changes of stock prices. In these examples, a premier goal is to discover structural changes from massive sequence data. In this collaborative project, the investigators intend to develop and study theoretically sound and practically flexible and portable strategies to analyze complex sequence data and apply the proposed algorithms to real data for scientific discovery. The investigators aim to develop scalable and flexible algorithms to identify and infer structural changes in contemporary high-throughput data. In particular, they will work on (a) fast change-point detection techniques which are flexible enough to handle non-Gaussian data and dependent data; (b) new statistical framework for joint analysis of multiple-sequence data; (c) theoretical foundations for inference of change points which can assign significant levels for detected change points and achieves the control of false discovery rate (FDR); (d) applications to CNV data for scientific discoveries. Moreover, the investigators plan to develop user-friendly and publicly accessible software for the proposed methods so that researchers can apply the proposed methodologies directly to their research problems.
科学和工程领域的现代技术产生了规模更大、内容更复杂的数据。使用统计和计算方法理解这些数据是重要的,也是具有挑战性的,特别是确定数据中的趋势。例如来自基因组学的大规模序列数据和来自经济学的市场数据。在基因组学中,研究人员通过检查整个基因组上数十万个生物标记物的测量来寻找拷贝数变异(CNV)。在金融工程中,识别和解释股票价格的突变是有用的。在这些例子中,首要目标是从海量序列数据中发现结构变化。在这个合作项目中,研究人员打算开发和研究理论上合理的、实用的灵活和可移植的策略来分析复杂的序列数据,并将所提出的算法应用于实际数据以进行科学发现。研究人员的目标是开发可扩展和灵活的算法,以识别和推断当代高通量数据的结构变化。特别是,他们将致力于:(A)灵活到足以处理非高斯数据和相关数据的快速变化点检测技术;(B)多序列数据联合分析的新统计框架;(C)推断变化点的理论基础,该变化点可以为检测到的变化点指定显著水平并实现对错误发现率(FDR)的控制;(D)将其应用于CNV数据进行科学发现。此外,研究人员计划为建议的方法开发用户友好和公开可用的软件,以便研究人员可以将建议的方法直接应用于他们的研究问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Depth importance in precision medicine (DIPM): a tree- and forest-based method for right-censored survival outcomes
- DOI:10.1093/biostatistics/kxaa021
- 发表时间:2022-01-01
- 期刊:
- 影响因子:2.1
- 作者:Chen, Victoria;Zhang, Heping
- 通讯作者:Zhang, Heping
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heping Zhang其他文献
Experimental study on fire smoke control by water mist curtain in a channel
通道内细水雾幕控制火灾烟气试验研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:13.6
- 作者:
Zhigang Wang;Xishi Wang;Yanqing Huang;Changfa Tao;Heping Zhang - 通讯作者:
Heping Zhang
On the global forcing number of hexagonal systems
关于六方晶系的全局强迫数
- DOI:
10.1016/j.dam.2013.08.020 - 发表时间:
2014 - 期刊:
- 影响因子:1.1
- 作者:
Heping Zhang;Jinzhuan Cai - 通讯作者:
Jinzhuan Cai
Some novel minimax results for perfect matchings of hexagonal systems
六角形系统完美匹配的一些新颖的极小极大结果
- DOI:
10.1016/j.dam.2022.06.017 - 发表时间:
2020-09 - 期刊:
- 影响因子:1.1
- 作者:
Xiangqian Zhou;Heping Zhang - 通讯作者:
Heping Zhang
Binary Regression for Risks in Excess of Subject‐Specific Thresholds
超过特定主题阈值的风险的二元回归
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:1.9
- 作者:
Heping Zhang;D. Zelterman - 通讯作者:
D. Zelterman
Structural analogues of the michellamine anti-HIV agents. Importance of the tetrahydroisoquinoline rings for biological activity
米歇尔明抗 HIV 药物的结构类似物。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Heping Zhang;D. Zembower;Zhidong Chen - 通讯作者:
Zhidong Chen
Heping Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heping Zhang', 18)}}的其他基金
Measure of Heterogeneity for Complex Data Objects
复杂数据对象的异构性度量
- 批准号:
2112711 - 财政年份:2021
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
CAREER: New Statistical Methods for Massive Spatial, Temporal and Spatial-Temporal Processes
职业:大规模空间、时间和时空过程的新统计方法
- 批准号:
0845368 - 财政年份:2009
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
- 批准号:
2231254 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant














{{item.name}}会员




