CAREER: Computational Analysis and Prediction of Genome-Wide Protein Targeting Signals and Localization

职业:全基因组蛋白质靶向信号和定位的计算分析和预测

基本信息

  • 批准号:
    0845381
  • 负责人:
  • 金额:
    $ 57.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

(This award is funded through the American Recovery and Reinvestment Act of 2009: Public Law 111-5). This is a CAREER award to support the research of Dr. Jianjun Hu, in the Department of Computer Science and Engineering at University of South Carolina. Dr. Hu is a second-year, tenure-track Assistant Professor.A typical cell has a size of only 10 microns while it contains about a billion proteins. How these proteins are transported from their synthesis sites to their target locations within or outside of the cell is still not well understood. Experiments showed that translocation of nascent proteins are usually guided by postal code-like targeting signals encoded within the amino acid sequences of proteins. Genome-wide identification and decoding of these so-called molecular zip codes are fundamental to comprehensive understanding of the cell. Experimentally identifying protein targeting signals is labor-intensive. Computational prediction of targeting signals is still a big challenge due to their low conservation at the amino acid level. Currently, no de novo discovery algorithm is available for identifying new protein targeting signals. Also missing are appropriate models and algorithms for comparing these signals. This grant is 1) investigating novel computational algorithms for de novo discovery of new protein targeting signals; 2) developing models and algorithms for representing, detecting, and comparing targeting signals and 3) developing a protein functional network-based integrative algorithms for protein localization prediction. A transformative result of these studies will be a sequence encoding scheme based on amino acid indexes. This scheme will convert protein sequences into sequences of amino acid groups (AAGs) such that conserved patterns can be represented, modeled and discovered. Finally, protein function networks will be derived from models of protein localization prediction. With this research, computational identification and decoding of genome-wide protein targeting signals and precise protein localization predication will greatly enhance the understanding of how proteins are assembled in a cell. Tools developed during this project will be made available on the lab website: http://mleg.cse.sc.eduAs a part of his CAREER grant, Dr. Hu will conduct short-term projects and student-run seminars to bring undergraduates into the bioinformatics research. A special effort will be made to change the perception that computer science is debugging code, as perceived by many high-school students. A novel computer game will be employed to show how bioinformatics addresses real-world problems. This will raise the public and especially the awareness and interest of K-12 students in bioinformatics. Students in the NSF STARTS Alliance program at the University of South Carolina will be targeted for students. Mini programming problems with a bioinformatics background will be developed for lower-level college students so that they will be exposed to bioinformatics early in their introductory programming courses. This project will also develop bioinformatics web services for de novo discovery, comparison, and retrieval of protein targeting signals and precise protein localization prediction.
(This该奖项通过2009年美国复苏和再投资法案资助:公法111-5)。这是一个职业奖,以支持博士胡建军的研究,在计算机科学与工程系在南卡罗来纳州。 胡博士是一位二年级的终身助理教授。一个典型的细胞只有10微米大小,但它含有大约10亿个蛋白质。这些蛋白质如何从它们的合成位点运输到它们在细胞内或细胞外的目标位置仍然没有很好的理解。实验表明,新生蛋白质的转运通常由蛋白质氨基酸序列中编码的邮政编码样靶向信号引导。全基因组识别和解码这些所谓的分子邮政编码是全面了解细胞的基础。实验识别蛋白质靶向信号是劳动密集型的。靶向信号的计算预测仍然是一个很大的挑战,因为它们在氨基酸水平上的保守性很低。目前,没有从头发现算法可用于识别新的蛋白质靶向信号。还缺少用于比较这些信号的适当模型和算法。该资助是1)研究新的计算算法,用于从头发现新的蛋白质靶向信号; 2)开发用于表示,检测和比较靶向信号的模型和算法; 3)开发基于蛋白质功能网络的整合算法用于蛋白质定位预测。这些研究的一个变革性结果将是基于氨基酸索引的序列编码方案。该方案将蛋白质序列转换为氨基酸组(AAGs)序列,从而可以表示,建模和发现保守模式。最后,蛋白质功能网络将从蛋白质定位预测模型中导出。通过这项研究,全基因组蛋白质靶向信号的计算识别和解码以及精确的蛋白质定位预测将大大提高对蛋白质如何在细胞中组装的理解。在这个项目中开发的工具将在实验室网站上提供:http://mleg.cse.sc.eduAs作为他职业生涯资助的一部分,胡博士将进行短期项目和学生举办的研讨会,使本科生参与生物信息学研究。一个特别的努力将作出改变的看法,计算机科学是调试代码,认为许多高中生。将采用一款新颖的电脑游戏来展示生物信息学如何解决现实世界的问题。这将提高公众,特别是K-12学生对生物信息学的认识和兴趣。南卡罗来纳州大学的NSF STARTS联盟项目的学生将成为学生的目标。将为低水平的大学生开发具有生物信息学背景的迷你编程问题,以便他们在入门编程课程的早期接触生物信息学。该项目还将开发生物信息学网络服务,用于从头发现,比较和检索蛋白质靶向信号和精确的蛋白质定位预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianjun Hu其他文献

Modelica-json: Transforming energy models to digitize the control delivery process
Modelica-json:转变能源模型以数字化控制交付过程
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Wetter;Jianjun Hu;Anand Krishnan Prakash;P. Ehrlich;Gabe Fierro;M. Grahovac;Marco Pritoni;Lisa Rivalin;Dave Robin
  • 通讯作者:
    Dave Robin
Deciphering Genetic Architecture of Adventitious Root and Related Shoot Traits in Populus Using QTL Mapping and RNA-Seq Data
利用 QTL 作图和 RNA-Seq 数据破译杨树不定根和相关芽性状的遗传结构
  • DOI:
    10.3390/ijms20246114
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Pei Sun;Huixia Jia;Yahong Zhang;Jianbo Li;Mengzhu Lu;Jianjun Hu
  • 通讯作者:
    Jianjun Hu
Concepts and hypothesis: integrin cytoplasmic domain-associated protein-1 (ICAP-1) as a potential player in cerebral cavernous malformation
概念和假设:整合素细胞质结构域相关蛋白 1 (ICAP-1) 作为脑海绵状血管瘤的潜在参与者
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Yiming Zheng;J. Qiu;Jianjun Hu;Guixue Wang
  • 通讯作者:
    Guixue Wang
DeepPatent: patent classification with convolutional neural networks and word embedding
  • DOI:
    https://doi.org/10.1007/s11192-018-2905-5
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Li Shaobo;Hu Jie;Yuxin Cui;Jianjun Hu
  • 通讯作者:
    Jianjun Hu
Membrane applications for microbial energy conversion: a review
  • DOI:
    10.1007/s10311-020-01032-7
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    15.7
  • 作者:
    Haixing Chang;Yajun Zou;Rui Hu;Haowen Feng;Haihua Wu;Nianbing Zhong;Jianjun Hu
  • 通讯作者:
    Jianjun Hu

Jianjun Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianjun Hu', 18)}}的其他基金

Collaborative Research: Integrating Physics and Generative Machine Learning Models for Inverse Materials Design
合作研究:将物理与生成机器学习模型相结合进行逆向材料设计
  • 批准号:
    1940099
  • 财政年份:
    2019
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
EAGER: Thermal Materials Discovery via Deep Learning based High-Throughput Computational Screening
EAGER:通过基于深度学习的高通量计算筛选来发现热材料
  • 批准号:
    1905775
  • 财政年份:
    2019
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
CAREER: Future phylogenies: novel computational frameworks for biomolecular sequence analysis involving complex evolutionary origins
职业:未来的系统发育:涉及复杂进化起源的生物分子序列分析的新型计算框架
  • 批准号:
    2144121
  • 财政年份:
    2022
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
CAREER: Computational and statistical methods for allele-specific chromatin structure analysis
职业:等位基因特异性染色质结构分析的计算和统计方法
  • 批准号:
    1751317
  • 财政年份:
    2018
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
CAREER: Computational tools for the analysis of large stochastic networks
职业:用于分析大型随机网络的计算工具
  • 批准号:
    1554907
  • 财政年份:
    2016
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
CAREER: Novel Algorithms for Dynamic Network Analysis in Computational Biology
职业:计算生物学动态网络分析的新算法
  • 批准号:
    1452795
  • 财政年份:
    2015
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Statistical Tradeoffs in Massive Data Analysis
职业:海量数据分析中的计算和统计权衡
  • 批准号:
    1350590
  • 财政年份:
    2014
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
CAREER: Fundamental Analysis and Computational Modeling of Acoustic Radiation in Turbulent Reacting Flows
职业:湍流反应流中声辐射的基础分析和计算模型
  • 批准号:
    1347566
  • 财政年份:
    2013
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Standard Grant
CAREER: NEURAL-COMPUTATIONAL ANALYSIS OF READING (AND READING IMPAIRMENT) IN INDIVIDUALS
职业:个人阅读(和阅读障碍)的神经计算分析
  • 批准号:
    1252975
  • 财政年份:
    2013
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
CAREER: Expanding the Dimensions of Computational Epigenomic Modeling and Analysis
职业:扩展计算表观基因组建模和分析的维度
  • 批准号:
    1254200
  • 财政年份:
    2013
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
CAREER: Phylogenomics - New Computational Methods through Stochastic Modeling and Analysis
职业:系统基因组学 - 通过随机建模和分析的新计算方法
  • 批准号:
    1149312
  • 财政年份:
    2012
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了