EAGER: Thermal Materials Discovery via Deep Learning based High-Throughput Computational Screening
EAGER:通过基于深度学习的高通量计算筛选来发现热材料
基本信息
- 批准号:1905775
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
EAGER: Thermal Materials Discovery via Deep Learning based High-Throughput Computational ScreeningAbstract:Non-technical summary:High-throughput computational screening of materials with target thermal conductivity has the capability to transform many industries such as thermoelectricity generation and high performance micro-/nano electronic devices, which produce a significant amount of excess heat during operation and searching for materials with high thermal conductivity is extremely important for the disruptive development of such micro-/nano-electronics in order to prolong their working life and increase reliability However, this potential has not been implemented due to the huge computational resources needed by current first-principles based thermal conductivity calculations and challenges of theoretical models because of the highly complex and nonlinear relationships from atomic structures of materials to the thermal transport properties. Deep learning has transformed an increasing number of fields where big data are available such as image and speech recognition, and medical image analysis. However, the materials science has remained largely untapped by deep learning despite its high economical potential. This two-year EAGER project aims to develop novel deep neural network techniques to achieve fast and accurate computational prediction of thermal conductivity for high-throughput thermal material discovery. The development of a reliable, fast, and accurate deep learning models is a necessity towards experimental validation and realistic application of high-throughput thermal materials screening. Simultaneously the program will aim to enhance diversity by engaging minority and underrepresented students to participate in STEM research. The participants will also develop understanding of both atomistic simulations of thermal transport and big data analytics; hence contributing to workforce development.Technical summary:Deep learning algorithm has been well developed in computer science, while direct thermal conductivity prediction from atomic structures has been made available in materials science. However, intuitive combination of this progress is not an easy task, since the scientific data (thermal conductivity of materials) cannot be quickly expanded to the level required by deep learning. To this end, this project will use heterogeneous multi-resolution thermal conductivity data and scarce data for training efficient and accurate deep learning models, which has never been realized for AlphaGO-like deep learning models before. In this exploratory stage, the focus will be on (1) developing graph and spatial 3D convolutional neural networks (CNNs) for thermal conductivity modeling by exploiting their automated hierarchical feature learning and non-linear mapping learning, and (2) developing multi-resolution data based deep neural network models for thermal conductivity prediction. (3) Experimental and DFT-based computational validation of predicted materials with extremely high or low thermal conductivity. A robust, reliable, and high accuracy deep learning model for thermal conductivity prediction will facilitate development of advanced functional materials in industry, such as energy conversion, storage, and thermal management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
EAGER:通过基于深度学习的高吞吐量计算筛选发现热材料摘要:非技术性总结:具有目标热导率的材料的高通量计算筛选具有改变许多行业的能力,例如热电发电和高性能微/纳米电子器件,其在操作期间产生大量的过量热,并且寻找具有高热导率的材料对于这种微/纳米电子器件的颠覆性发展是极其重要的,以便延长其工作寿命并增加可靠性。由于当前的第一-由于从材料的原子结构到热输运的高度复杂和非线性关系,特性.深度学习已经改变了越来越多的大数据可用领域,如图像和语音识别以及医学图像分析。然而,尽管材料科学具有很高的经济潜力,但深度学习在很大程度上尚未开发。这个为期两年的EAGER项目旨在开发新型深度神经网络技术,以实现快速准确的热导率计算预测,用于高通量热材料发现。开发可靠、快速、准确的深度学习模型是高通量热材料筛选实验验证和实际应用的必要条件。同时,该计划将旨在通过吸引少数民族和代表性不足的学生参与STEM研究来增强多样性。技术总结:深度学习算法在计算机科学中已经得到了很好的发展,而直接从原子结构预测热导率在材料科学中已经可用。然而,将这一进展直观地结合起来并不是一件容易的事情,因为科学数据(材料的热导率)无法快速扩展到深度学习所需的水平。为此,该项目将使用异构多分辨率热导率数据和稀缺数据来训练高效准确的深度学习模型,这在以前从未实现过AlphaGO类深度学习模型。在这个探索阶段,重点将是(1)开发图形和空间3D卷积神经网络(CNN),通过利用其自动分层特征学习和非线性映射学习进行热导率建模,以及(2)开发基于多分辨率数据的深度神经网络模型,用于热导率预测。(3)对具有极高或极低热导率的预测材料进行实验和基于DFT的计算验证。强大、可靠、高精度的深度学习热导率预测模型将促进能源转换、存储和热管理等行业中先进功能材料的开发。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First-Principles Investigation of Ti 2 CSO and Ti 2 CSSe Janus MXene Structures for Li and Mg Electrodes
用于锂和镁电极的 Ti 2 CSO 和 Ti 2 CSSe Janus MXene 结构的第一性原理研究
- DOI:10.1021/acs.jpcc.1c00082
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Siriwardane, Edirisuriya M.;Hu, Jianjun
- 通讯作者:Hu, Jianjun
Machine Learning-Based Prediction of Crystal Systems and Space Groups from Inorganic Materials Compositions
- DOI:10.1021/acsomega.9b04012
- 发表时间:2020-02
- 期刊:
- 影响因子:4.1
- 作者:Yong Zhao;Yuxin Cui;Zheng Xiong;Jing Jin;Zhonghao Liu;Rongzhi Dong;Jianjun Hu
- 通讯作者:Yong Zhao;Yuxin Cui;Zheng Xiong;Jing Jin;Zhonghao Liu;Rongzhi Dong;Jianjun Hu
Predicting Elastic Properties of Materials from Electronic Charge Density Using 3D Deep Convolutional Neural Networks
- DOI:10.1021/acs.jpcc.0c02348
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Yong Zhao;Kunpeng Yuan;Yinqiao Liu;Steph-Yves M. Louis;Ming Hu;Jianjun Hu
- 通讯作者:Yong Zhao;Kunpeng Yuan;Yinqiao Liu;Steph-Yves M. Louis;Ming Hu;Jianjun Hu
Composition based crystal materials symmetry prediction using machine learning with enhanced descriptors
- DOI:10.1016/j.commatsci.2021.110686
- 发表时间:2021-07-06
- 期刊:
- 影响因子:3.3
- 作者:Li, Yuxin;Dong, Rongzhi;Hu, Jianjun
- 通讯作者:Hu, Jianjun
TCSP: a Template-Based Crystal Structure Prediction Algorithm for Materials Discovery
- DOI:10.1021/acs.inorgchem.1c03879
- 发表时间:2022-06-06
- 期刊:
- 影响因子:4.6
- 作者:Wei, Lai;Fu, Nihang;Hu, Jianjun
- 通讯作者:Hu, Jianjun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianjun Hu其他文献
Modelica-json: Transforming energy models to digitize the control delivery process
Modelica-json:转变能源模型以数字化控制交付过程
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
M. Wetter;Jianjun Hu;Anand Krishnan Prakash;P. Ehrlich;Gabe Fierro;M. Grahovac;Marco Pritoni;Lisa Rivalin;Dave Robin - 通讯作者:
Dave Robin
Deciphering Genetic Architecture of Adventitious Root and Related Shoot Traits in Populus Using QTL Mapping and RNA-Seq Data
利用 QTL 作图和 RNA-Seq 数据破译杨树不定根和相关芽性状的遗传结构
- DOI:
10.3390/ijms20246114 - 发表时间:
2019-12 - 期刊:
- 影响因子:5.6
- 作者:
Pei Sun;Huixia Jia;Yahong Zhang;Jianbo Li;Mengzhu Lu;Jianjun Hu - 通讯作者:
Jianjun Hu
Concepts and hypothesis: integrin cytoplasmic domain-associated protein-1 (ICAP-1) as a potential player in cerebral cavernous malformation
概念和假设:整合素细胞质结构域相关蛋白 1 (ICAP-1) 作为脑海绵状血管瘤的潜在参与者
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:6
- 作者:
Yiming Zheng;J. Qiu;Jianjun Hu;Guixue Wang - 通讯作者:
Guixue Wang
One‐dimensional growth of colloidal PbSe nanorods in chloroalkanes
胶体 PbSe 纳米棒在氯代烷烃中的一维生长
- DOI:
10.1002/pssr.201600278 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
S. R. Kandel;Shailendra Chiluwal;Zhoufeng Jiang;Yiteng Tang;P. Roland;K. Subedi;Douglas M. Dimick;P. Moroz;M. Zamkov;R. Ellingson;Jianjun Hu;A. Voevodin;Liangfeng Sun - 通讯作者:
Liangfeng Sun
DeepPatent: patent classification with convolutional neural networks and word embedding
- DOI:
https://doi.org/10.1007/s11192-018-2905-5 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Li Shaobo;Hu Jie;Yuxin Cui;Jianjun Hu - 通讯作者:
Jianjun Hu
Jianjun Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianjun Hu', 18)}}的其他基金
Collaborative Research: Integrating Physics and Generative Machine Learning Models for Inverse Materials Design
合作研究:将物理与生成机器学习模型相结合进行逆向材料设计
- 批准号:
1940099 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Computational Analysis and Prediction of Genome-Wide Protein Targeting Signals and Localization
职业:全基因组蛋白质靶向信号和定位的计算分析和预测
- 批准号:
0845381 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Thermal-lag自由活塞斯特林发动机启动与可持续运行机理研究
- 批准号:51806227
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
High-performance thin film porous pyroelectric materials and composites for thermal sensing and harvesting
用于热传感和收集的高性能薄膜多孔热释电材料和复合材料
- 批准号:
EP/Y017412/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
BioBuild - Innovative bio-based building materials with thermal energy storage function
BioBuild——具有储热功能的创新生物基建筑材料
- 批准号:
10088600 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Nature’s advanced optical materials and their role in thermal management
大自然的先进光学材料及其在热管理中的作用
- 批准号:
DP230100207 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Reveal of thermal transport in disordered materials with local order and hierarchical structure by topological and network approaches
通过拓扑和网络方法揭示具有局部有序和分层结构的无序材料中的热传输
- 批准号:
23H01360 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CDS&E: Coupled Electro-Thermal Transport in Two-Dimensional Materials and Heterostructures
CDS
- 批准号:
2302879 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Development of Si-based phase change materials at ultra-high temperature for high-efficiency thermal energy storage systems
开发用于高效热能存储系统的超高温硅基相变材料
- 批准号:
23KJ0032 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
- 批准号:
23KJ0893 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Thermal stability and quench protection of prctical high temerature superconducting materials and magnets
实用高温超导材料及磁体的热稳定性及失超保护
- 批准号:
22KF0040 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows