Collaborative Research: Integrating Physics and Generative Machine Learning Models for Inverse Materials Design

合作研究:将物理与生成机器学习模型相结合进行逆向材料设计

基本信息

  • 批准号:
    1940099
  • 负责人:
  • 金额:
    $ 40.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This project is aimed to address a grand challenge in data-intensive materials science and engineering to find better materials with desired properties, often with the goal to enhance performance in specific applications. This project addresses this grand challenge with a specific focus on finding metal organic framework (MOF) materials that are used to separate gas mixtures and finding better battery materials for energy storage. The PIs will combine theoretical methods from statistical mechanics and condensed-matter physics, and physics-based models, to generate information-rich materials data which is integrated with generative machine learning (ML) algorithms to search a complex chemical design space efficiently and to train deep learning models for fast screening of materials properties. This project will be carried out by a multidisciplinary collaboration involving researchers from physics, materials science and engineering, computer science, and mathematics. The resulting multidisciplinary environment fosters training the next generation data savvy scientists who will engage in collaborative multidisciplinary research. Existing approaches for computational design of metal organic frameworks (MOF) and solid-state electrolyte materials are largely based on screening of known materials or enumerative search of hypothetical materials. This project develops a new approach that integrates first principles calculations, experimental data and abundant data generated by physics-based models to train generalized antagonistic network (GAN) models for efficient search of the materials design space, and to train deep convolutional neural network (DCNN) models for fast and accurate screening of properties of the GAN-generated candidate materials. Additionally, graph-based GAN models will be used for MOF topology exploration and can be applied to other nanomaterials designs. More specifically, the investigators will: 1) develop and exploit physics-based models for fast calculation of properties such as diffusivity, ion conductivity, and mechanical stability; 2) develop generative adversarial network (GAN) models with built-in physics rules for efficient exploration of the chemical design space for both MOF materials and solid electrolytes; 3) use persistence homology and Bravais lattice sequence representations of MOF materials and solid electrolytes, respectively, to build Deep Convolutional Neural Network (DCNN) models for fast and accurate prediction of the physical properties of generated materials; 4) apply high-level quantum-mechanical calculations for verification of discovered materials. Accomplishments from this project will lead to accelerated discovery of novel nanostructured materials for gas separation and energy storage, materials for lithium-ion batteries, novel data-driven scheme for materials design, and theoretical methods enabling implementation of advanced data science techniques. The highly interdisciplinary collaboration will offer students unique opportunities to interact with a variety of disciplines, and training the next-generation scientists with the mindset for multidiscipline collaborations. Educational and outreach activities will be developed and undertaken in conjunction with the proposed research activities.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Materials Research within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在解决数据密集型材料科学和工程中的一个重大挑战,即找到具有理想性能的更好的材料,通常以提高特定应用的性能为目标。该项目解决了这一重大挑战,重点是寻找用于分离气体混合物的金属有机框架(MOF)材料,并寻找更好的储能电池材料。pi将结合统计力学和凝聚态物理学的理论方法,以及基于物理的模型,生成信息丰富的材料数据,这些数据与生成式机器学习(ML)算法集成,以有效地搜索复杂的化学设计空间,并训练深度学习模型以快速筛选材料特性。该项目将由多学科合作进行,涉及物理学、材料科学与工程、计算机科学和数学方面的研究人员。由此产生的多学科环境有助于培养下一代精通数据的科学家,他们将从事多学科合作研究。现有的金属有机框架(MOF)和固态电解质材料的计算设计方法主要是基于已知材料的筛选或假设材料的枚举搜索。该项目开发了一种新的方法,该方法集成了第一性原理计算、实验数据和基于物理模型生成的丰富数据,以训练广义对抗网络(GAN)模型,用于有效搜索材料设计空间,并训练深度卷积神经网络(DCNN)模型,用于快速准确地筛选GAN生成的候选材料的性质。此外,基于图形的GAN模型将用于MOF拓扑探索,并可应用于其他纳米材料的设计。更具体地说,研究人员将:1)开发和利用基于物理的模型来快速计算诸如扩散率、离子电导率和机械稳定性等特性;2)开发具有内置物理规则的生成对抗网络(GAN)模型,用于有效探索MOF材料和固体电解质的化学设计空间;3)分别利用MOF材料和固体电解质的持久同源性和Bravais晶格序列表示,构建深度卷积神经网络(Deep Convolutional Neural Network, DCNN)模型,快速准确地预测生成材料的物理性质;4)应用高级量子力学计算来验证发现的材料。该项目的成果将加速发现用于气体分离和储能的新型纳米结构材料、锂离子电池材料、材料设计的新型数据驱动方案,以及实现先进数据科学技术的理论方法。高度跨学科的合作将为学生提供与各种学科互动的独特机会,并培养具有多学科合作思维的下一代科学家。将结合拟议的研究活动拟订和开展教育和外联活动。该项目是美国国家科学基金会利用数据革命(HDR)大创意活动的一部分,由HDR和美国国家科学基金会数学和物理科学理事会材料研究部共同支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First-Principles Investigation of Ti 2 CSO and Ti 2 CSSe Janus MXene Structures for Li and Mg Electrodes
用于锂和镁电极的 Ti 2 CSO 和 Ti 2 CSSe Janus MXene 结构的第一性原理研究
  • DOI:
    10.1021/acs.jpcc.1c00082
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siriwardane, Edirisuriya M.;Hu, Jianjun
  • 通讯作者:
    Hu, Jianjun
Machine Learning-Based Prediction of Crystal Systems and Space Groups from Inorganic Materials Compositions
  • DOI:
    10.1021/acsomega.9b04012
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Yong Zhao;Yuxin Cui;Zheng Xiong;Jing Jin;Zhonghao Liu;Rongzhi Dong;Jianjun Hu
  • 通讯作者:
    Yong Zhao;Yuxin Cui;Zheng Xiong;Jing Jin;Zhonghao Liu;Rongzhi Dong;Jianjun Hu
Composition based crystal materials symmetry prediction using machine learning with enhanced descriptors
  • DOI:
    10.1016/j.commatsci.2021.110686
  • 发表时间:
    2021-07-06
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Li, Yuxin;Dong, Rongzhi;Hu, Jianjun
  • 通讯作者:
    Hu, Jianjun
TCSP: a Template-Based Crystal Structure Prediction Algorithm for Materials Discovery
  • DOI:
    10.1021/acs.inorgchem.1c03879
  • 发表时间:
    2022-06-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wei, Lai;Fu, Nihang;Hu, Jianjun
  • 通讯作者:
    Hu, Jianjun
MaterialsAtlas.org: a materials informatics web app platform for materials discovery and survey of state-of-the-art
  • DOI:
    10.1038/s41524-022-00750-6
  • 发表时间:
    2022-04-11
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Hu,Jianjun;Stefanov,Stanislav;Wei,Lai
  • 通讯作者:
    Wei,Lai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianjun Hu其他文献

Modelica-json: Transforming energy models to digitize the control delivery process
Modelica-json:转变能源模型以数字化控制交付过程
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Wetter;Jianjun Hu;Anand Krishnan Prakash;P. Ehrlich;Gabe Fierro;M. Grahovac;Marco Pritoni;Lisa Rivalin;Dave Robin
  • 通讯作者:
    Dave Robin
Deciphering Genetic Architecture of Adventitious Root and Related Shoot Traits in Populus Using QTL Mapping and RNA-Seq Data
利用 QTL 作图和 RNA-Seq 数据破译杨树不定根和相关芽性状的遗传结构
  • DOI:
    10.3390/ijms20246114
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Pei Sun;Huixia Jia;Yahong Zhang;Jianbo Li;Mengzhu Lu;Jianjun Hu
  • 通讯作者:
    Jianjun Hu
Concepts and hypothesis: integrin cytoplasmic domain-associated protein-1 (ICAP-1) as a potential player in cerebral cavernous malformation
概念和假设:整合素细胞质结构域相关蛋白 1 (ICAP-1) 作为脑海绵状血管瘤的潜在参与者
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Yiming Zheng;J. Qiu;Jianjun Hu;Guixue Wang
  • 通讯作者:
    Guixue Wang
One‐dimensional growth of colloidal PbSe nanorods in chloroalkanes
胶体 PbSe 纳米棒在氯代烷烃中的一维生长
  • DOI:
    10.1002/pssr.201600278
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. R. Kandel;Shailendra Chiluwal;Zhoufeng Jiang;Yiteng Tang;P. Roland;K. Subedi;Douglas M. Dimick;P. Moroz;M. Zamkov;R. Ellingson;Jianjun Hu;A. Voevodin;Liangfeng Sun
  • 通讯作者:
    Liangfeng Sun
DeepPatent: patent classification with convolutional neural networks and word embedding
  • DOI:
    https://doi.org/10.1007/s11192-018-2905-5
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Li Shaobo;Hu Jie;Yuxin Cui;Jianjun Hu
  • 通讯作者:
    Jianjun Hu

Jianjun Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianjun Hu', 18)}}的其他基金

EAGER: Thermal Materials Discovery via Deep Learning based High-Throughput Computational Screening
EAGER:通过基于深度学习的高通量计算筛选来发现热材料
  • 批准号:
    1905775
  • 财政年份:
    2019
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
CAREER: Computational Analysis and Prediction of Genome-Wide Protein Targeting Signals and Localization
职业:全基因组蛋白质靶向信号和定位的计算分析和预测
  • 批准号:
    0845381
  • 财政年份:
    2009
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325837
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325838
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325836
  • 财政年份:
    2024
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310412
  • 财政年份:
    2023
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
IntBIO: Collaborative Research: Phenotypes of the Anthropocene: integrating the consequences of sensory stressors across biological scales
IntBIO:合作研究:人类世的表型:整合跨生物尺度的感觉压力源的后果
  • 批准号:
    2316364
  • 财政年份:
    2023
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了