CAREER: Atomically-Engineered Complex Oxides and their Heterostructures for Novel Electronic Functionalities

职业:原子工程复杂氧化物及其异质结构用于新型电子功能

基本信息

  • 批准号:
    0845464
  • 负责人:
  • 金额:
    $ 52.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

****Non-technical abstract****The objective of this CAREER award is to combine research efforts to investigate novel functionalities in atomic-scale-engineered complex-oxides going beyond the limitations of conventional semiconductors with education and outreach programs to train a new generation of scientists and engineers in the areas of materials physics and nanoscience. One of the promising material systems for post-silicon nanoelectronics is complex-oxides. Complex oxides exhibit a wide range of functionalities such as high critical temperature superconductivity, (anti)ferromagnetism, and ferroelectricity that do not exist in conventional semiconductors. Moreover, entirely new functionalities can be created when different complex oxides are combined into a heterostructure. This project will investigate emergent functionalities hidden in this new materials family, utilizing a newly developed atomic-layer engineering technique. In order to bring the excitement of these research activities to a broader community and train a new generation of scientists and engineers, a number of education and outreach programs will be developed aimed at K-12 and university students. Hands-on demonstration modules for middle-school students will be developed for the mobile Rutgers Science Explorer program. Pre- and in-service high-school teachers will learn research methods in the lab and develop teaching modules for high-school students reflecting their experience in a materials physics research lab. Graduates and undergraduates, especially from underrepresented groups, will be actively involved in the main research activities and outreach programs.****Technical Abstract****The research component of this CAREER project will create and investigate a number of novel complex oxides and their heterostructures anticipated to show previously nonexistent functionalities and properties such as: highly-tunable high-mobility d-band 2DEGs, new multiferroics, and artificial high-temperature superconductors, utilizing a newly developed complex-oxide atomic-layer MBE. These studies will deepen understanding of electron-electron correlation effects in 2D d-band electrons, interfacial coupling mechanisms between magnetism and ferroelectricity, and the effect of atomic-scale control parameters such as modulation doping on superconducting properties of artificial high-temperature superconductors, and pave the way to a new age of complex-oxide nanoelectronics. In order to bring the excitement of these research activities to a broader community and train a new generation of scientists and engineers, a number of education and outreach programs will be developed aimed at K-12 and university students. Hands-on demonstration modules for middle-school students will be developed for the mobile Rutgers Science Explorer program. Pre- and in-service high-school teachers will learn research methods in the lab and develop teaching modules for high-school students reflecting their experience in a materials physics research lab. Graduates and undergraduates, especially from underrepresented groups, will be actively involved in the main research activities and outreach programs.
****非技术摘要****该职业奖的目标是将研究工作结合起来,研究原子尺度工程复杂氧化物的新功能,超越传统半导体的限制,并通过教育和推广计划培养材料物理学和纳米科学领域的新一代科学家和工程师。复合氧化物是后硅纳米电子学最有前途的材料体系之一。复合氧化物表现出广泛的功能,如高临界温度超导性,(反)铁磁性和铁电性,这些在传统半导体中不存在。此外,当不同的复合氧化物结合成异质结构时,可以产生全新的功能。该项目将利用新开发的原子层工程技术,研究隐藏在这种新材料家族中的新兴功能。为了将这些令人兴奋的研究活动带给更广泛的社区,并培养新一代的科学家和工程师,将开发一些针对K-12和大学生的教育和推广计划。面向中学生的动手示范模块将为罗格斯大学的移动科学探索者项目开发。职前和在职高中教师将在实验室学习研究方法,并为高中生开发反映他们在材料物理研究实验室经验的教学模块。毕业生和本科生,特别是来自代表性不足的群体,将积极参与主要的研究活动和外展计划。****技术摘要****这个CAREER项目的研究部分将创造和研究一些新的复杂氧化物及其异质结构,这些异质结构有望显示以前不存在的功能和特性,例如:高度可调谐的高迁移率d波段2DEGs,新的多铁质材料和人工高温超导体,利用新开发的复杂氧化物原子层MBE。这些研究将加深对二维d波段电子-电子相关效应、磁性和铁电之间的界面耦合机制以及调制掺杂等原子尺度控制参数对人工高温超导体超导性能的影响的理解,并为复杂氧化物纳米电子学的新时代铺平道路。为了将这些令人兴奋的研究活动带给更广泛的社区,并培养新一代的科学家和工程师,将开发一些针对K-12和大学生的教育和推广计划。面向中学生的动手示范模块将为罗格斯大学的移动科学探索者项目开发。职前和在职高中教师将在实验室学习研究方法,并为高中生开发反映他们在材料物理研究实验室经验的教学模块。毕业生和本科生,特别是来自代表性不足的群体,将积极参与主要的研究活动和外展计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seongshik Oh其他文献

Probing unconventional superconducting symmetries using Josephson interferometry
使用约瑟夫森干涉测量非常规超导对称性
  • DOI:
    10.1016/s0921-4534(01)01178-9
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    W. Neils;D. Harlingen;Seongshik Oh;J. Eckstein;G. Hammerl;J. Mannhart;A. Schmehl;C. Schneider;R. Schulz
  • 通讯作者:
    R. Schulz
Interaction of in-plane Drude carrier with c-axis phonon in PdCoO_2
PdCoO_2 中面内 Drude 载流子与 c 轴声子的相互作用
  • DOI:
    10.1038/s41535-023-00607-1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    D. Seo;G. Ahn;Gaurab Rimal;S. Khim;S. Chung;A. Mackenzie;Seongshik Oh;S. Moon;E. Choi
  • 通讯作者:
    E. Choi
Infrared spectroscopy of two-dimensional electron systems
二维电子系统的红外光谱
  • DOI:
    10.1140/epjst/e2019-800145-7
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Calvani;A. Kalaboukhov;P. Shibayev;M. Salehi;J. Moon;Seongshik Oh;E. Falsetti;M. Ortolani;F. Granozio;J. Brubach;P. Roy;A. Nucara
  • 通讯作者:
    A. Nucara
T linearity of in-plane resistivity in Bi 2 Sr 2 Ca Cu 2 O 8 + δ thin films
Bi 2 Sr 2 Ca Cu 2 O 8 + δ薄膜面内电阻率的T线性
  • DOI:
    10.1103/physrevb.71.052504
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Seongshik Oh;T. Luccio;J. Eckstein
  • 通讯作者:
    J. Eckstein
Oxygen Annealing Driven Structural Evolution in PdCoO2 Films Through Electron Microscopy
通过电子显微镜观察氧退火驱动 PdCoO2 薄膜的结构演化
  • DOI:
    10.1017/s1431927620015287
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Debangshu Mukherjee;Gaurab Rimal;R. Unocic;Ho;Seongshik Oh;M. Brahlek
  • 通讯作者:
    M. Brahlek

Seongshik Oh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seongshik Oh', 18)}}的其他基金

Tunable topological hybrid materials via interface- and topology-engineered heterostructures
通过界面和拓扑工程异质结构的可调谐拓扑混合材料
  • 批准号:
    2004125
  • 财政年份:
    2020
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant

相似海外基金

New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    2403736
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
AtomCat4Fuel: Atomically construction of AuPd catalyst for efficient CO2 hydrogenation to ethanol
AtomCat4Fuel:原子构建 AuPd 催化剂,用于高效 CO2 加氢生成乙醇
  • 批准号:
    EP/Y029305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Fellowship
CAREER: Atomically-Precise Single Photon Emitters
职业:原子级精确的单光子发射器
  • 批准号:
    2340398
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Harnessing Interlayer Biexcitons in Atomically Thin Heterostructures
利用原子薄异质结构中的层间双激子
  • 批准号:
    DP240101011
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Discovery Projects
Liquid metal solvents for high entropy and atomically configured systems
用于高熵和原子配置系统的液态金属溶剂
  • 批准号:
    DP240101086
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Discovery Projects
ATomicallY Precise nanorIbbons QUAntum pLatform
原子级精确纳米带量子平台
  • 批准号:
    10076990
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    EU-Funded
Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    ARC Future Fellowships
Optical properties and device physics of mixed-dimensional heterostructures constructed from atomically defined nanomaterials
由原子定义的纳米材料构建的混合维异质结构的光学特性和器件物理
  • 批准号:
    23H00262
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of atomically precise nano-molecular composite for investigation and exploration of their structure and properties
开发原子级精确的纳米分子复合材料,用于研究和探索其结构和性能
  • 批准号:
    23H01917
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of electrocatalytic activity of atomically precise metal clusters for the creation of highly active energy and environmental catalysts
阐明原子精确金属簇的电催化活性,用于创建高活性能源和环境催化剂
  • 批准号:
    23KK0098
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了