CAREER: Scalable Machine Learning for Astrostatistics

职业:天文统计学的可扩展机器学习

基本信息

  • 批准号:
    0845865
  • 负责人:
  • 金额:
    $ 59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project is designing new data structures and efficient algorithms for scaling modern machine learning techniques to massive datasets, and their application to recent sky surveys to solve central problems in astronomy. The long term goal is to scale up all the best machine learning techniques, by focusing on key computational primitives, and by creating the educational initiatives to allow future generations to do the same.In the shorter term, the project is accelerating the singular value decomposition (SVD), the key computational bottleneck in a number of state-of-the-art methods in machine learning (and well beyond). In addition to the classic principal component analysis, we consider the application of our ideas to kernel ridge regression, graphical model inference, and maximum variance unfolding, each representing a larger class (kernelized, graphical, and convex models). Working with leading astrophysicist collaborators, we validate each of these in a fundamental astronomical data analysis problem: respectively, estimation of the distances to objects, cross-matching of objects in different catalogs, and discovery of new types of objects. The key insight is the use of a new data structure called a cosine tree, which partitions vectors based on their mutual orthogonality, using analogies of successful ideas for distance-based geometric problems to enable a new Monte Carlo sampling technique. Preliminary results demonstrate as much as 20,000 times speedup over exact SVD in moderate-sized problems with user-specifiable high approximation accuracy.The broader impact of the work is the transformative ability to utilize the advanced data analysis techniques to unlock the potential insights across science, engineering, and business lying within the tera- and peta-scale datasets of the present and future. Apropos these goals, the project educational goals are deep integration of real-world data analysis, and cross-disciplinary thinking into traditional computing programs.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目旨在设计新的数据结构和高效算法,将现代机器学习技术扩展到大规模数据集,并将其应用于最近的天空调查,以解决天文学中的核心问题。长期目标是通过专注于关键的计算原语,并通过创建教育计划让后代也能这样做,来扩展所有最好的机器学习技术。从短期来看,该项目正在加速奇异值分解(SVD),这是机器学习中许多最先进方法(以及其他领域)的关键计算瓶颈。除了经典的主成分分析,我们还考虑将我们的想法应用于核脊回归、图形模型推理和最大方差展开,每个都代表一个更大的类(核化、图形化和凸模型)。与顶尖的天体物理学家合作,我们在一个基本的天文数据分析问题中验证了这些:分别是物体距离的估计,不同目录中物体的交叉匹配,以及新类型物体的发现。关键的洞察力是使用了一种叫做余弦树的新数据结构,它根据向量的相互正交性来划分向量,使用类似于基于距离的几何问题的成功思想来实现新的蒙特卡罗采样技术。初步结果表明,在用户指定的高近似精度的中等规模的问题中,与精确SVD相比,加速高达20,000倍。这项工作的更广泛的影响是利用先进的数据分析技术,在现在和未来的万亿级和千万亿级数据集中,解锁科学、工程和商业领域的潜在见解的变革性能力。针对这些目标,该项目的教育目标是将现实世界的数据分析和跨学科的思考深度集成到传统的计算程序中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Gray其他文献

DNA-nanopore technology: a human perspective.
Impact of swabbing solutions on the recovery of biological material from non-porous surfaces
  • DOI:
    10.1016/j.fsisyn.2024.100551
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Agnieszka Kuffel;Niamh Nic Daeid;Alexander Gray
  • 通讯作者:
    Alexander Gray
An improved rapid method for DNA recovery from cotton swabs
  • DOI:
    10.1016/j.fsigen.2023.102848
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Gray;Agnieszka Kuffel;Niamh Nic Daeid
  • 通讯作者:
    Niamh Nic Daeid
DNA recovery from biological material on mini tapes using a simple extraction buffer and solid phase reversible immobilisation (SPRI) purification
  • DOI:
    10.1016/j.fsir.2023.100350
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Agnieszka Kuffel;Niamh Nic Daeid;Alexander Gray
  • 通讯作者:
    Alexander Gray
1. About the Book and Supporting Material
1. 关于本书和支持材料

Alexander Gray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Gray', 18)}}的其他基金

Density-Preserving Maps
密度保持贴图
  • 批准号:
    0907484
  • 财政年份:
    2009
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant
III-SGER: Algorithms for Next-Generation Protein Modeling: Beyond Pair-wise Interactions
III-SGER:下一代蛋白质建模算法:超越成对相互作用
  • 批准号:
    0848389
  • 财政年份:
    2008
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    $ 59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deployment of Scalable System Software for Machine Learning Technology to Saving Computing Resources
部署机器学习技术的可扩展系统软件以节省计算资源
  • 批准号:
    23H03369
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scalable Quantum Machine Learning with NISQ Devices: Theoretic and Algorithmic Foundations
使用 NISQ 设备的可扩展量子机器学习:理论和算法基础
  • 批准号:
    2882984
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Studentship
Making Visualization Scalable (MAVIS) for explaining machine learning classification models
使可视化可扩展(MAVIS)用于解释机器学习分类模型
  • 批准号:
    EP/X029689/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Research Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
  • 批准号:
    2343869
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Elements: Development of cyberinfrastructure to establish a scalable application of self-supervised machine learning for over a decade of NOAA's water column sonar data
要素:开发网络基础设施,以建立可扩展的自监督机器学习应用程序,用于 NOAA 十多年来的水柱声纳数据
  • 批准号:
    2311843
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
  • 批准号:
    2324651
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant
Scalable and Efficient Machine-Type Communications for 5G Wireless Access and Beyond
适用于 5G 无线接入及其他技术的可扩展且高效的机器类型通信
  • 批准号:
    RGPIN-2019-05858
  • 财政年份:
    2022
  • 资助金额:
    $ 59万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable optimization methods for machine learning
机器学习的可扩展优化方法
  • 批准号:
    572742-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 59万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了