Scalable and Efficient Machine-Type Communications for 5G Wireless Access and Beyond

适用于 5G 无线接入及其他技术的可扩展且高效的机器类型通信

基本信息

  • 批准号:
    RGPIN-2019-05858
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

With the rollout of the fourth-generation (4G) wireless systems around 2010 and given a historical 10-year cycle for every existing generation, it is expected that fifth generation (5G) wireless systems will be deployed sometime around 2020. So far, from 1G to 4G, the evolution towards each next generation has been driven by the need to satisfy the ever-increasing demand for high-speed broadband wireless access anywhere/anytime. But, this relentless race for increasing the data rate has been mainly fueled by the need to serve human-operated mobile devices (e.g., smartphones and tablets); a scenario commonly known as human-type communications (HTC). 5G will depart from this scheme: its focus will not only be on enhanced broadband services (for HTC purposes) but also to support machine-type communications (MTC). MTC is seen as a form of data communication, among devices and/or from devices to a set of servers, that do not necessarily require human interaction. By supporting MTC, 5G aims to sustain the long-term vision of deploying the internet of things (IoT) paradigm which promises many revolutionizing applications such as remote medical diagnosis/surgery, self-driving cars, and industrial wireless automation. MTC promises huge market growth with ~50 billion connected devices by 2020. Support for such a massive number of MTC devices with different requirements in terms of power consumption, latency, reliability, and security has deep implications on the end-to-end network architecture. This proposed research aims to tackle the main technological challenges associated with the two generic modes of MTC: i) massive machine-type communications (mMTC) and ii) ultra-reliable low-latency communication (URLLC). We aim to devise scalable and cost-effective grant-free multiple access schemes that will enable future 5G networks to accommodate the massive number of mMTC devices. We also aim to develop innovative communication schemes that meet the stringent conflicting requirements in terms of reliability and latency that are needed for a myriad of URLLC-based mission-critical applications. Towards these goals, we shall exploit the two intrinsic features of MTC, namely their intermittent access to the network and their short-packet signaling. The proposed research lies at the forefront of current 5G initiatives in major universities and industry labs worldwide. The envisaged approaches and methods are original and have the potential of leading to major advances in MTC paradigm. Moreover, my R&D vision advocates a challenging methodology that covers many aspects of communication engineering, starting from the very component level (development of new algorithmic solutions and their prototyping/testing on hardware platforms) all the way up to both the link (whole transceiver design) and system (network integration/assessment) levels. This promotes scientific impact and industrial relevance and provides unique added-value HQP training opportunities.
随着第四代(4G)无线系统在2010年左右推出,考虑到现有每一代的历史10年周期,预计第五代(5G)无线系统将在2020年左右部署。到目前为止,从1G到4G,每一代的发展都是为了满足随时随地高速宽带无线接入不断增长的需求。但是,这种不断提高数据速率的竞争主要是由人为操作的移动设备(例如智能手机和平板电脑)的需求推动的;这种情况通常被称为人类类型通信(HTC)。5G将与这一计划不同:它的重点不仅是增强宽带服务(针对HTC的目的),还将支持机器类型通信(MTC)。MTC被视为设备之间和/或设备与一组服务器之间的一种数据通信形式,不一定需要人工交互。通过支持MTC, 5G旨在维持部署物联网(IoT)范式的长期愿景,该范式承诺许多革命性的应用,如远程医疗诊断/手术、自动驾驶汽车和工业无线自动化。MTC承诺,到2020年,联网设备的市场将增长到约500亿台。支持如此多的MTC设备,这些设备在功耗、延迟、可靠性和安全性方面有着不同的要求,这对端到端网络架构有着深远的影响。本研究旨在解决与MTC两种通用模式相关的主要技术挑战:i)大规模机器型通信(mMTC)和ii)超可靠低延迟通信(URLLC)。我们的目标是设计可扩展且具有成本效益的免授权多址方案,使未来的5G网络能够容纳大量的mMTC设备。我们还致力于开发创新的通信方案,以满足无数基于url的关键任务应用程序在可靠性和延迟方面的严格冲突要求。为了实现这些目标,我们将利用MTC的两个固有特征,即它们对网络的间歇访问和它们的短分组信令。拟议的研究处于全球主要大学和行业实验室当前5G计划的前沿。设想的方法和方法是原创的,有可能导致MTC范式的重大进展。此外,我的研发愿景提倡一种具有挑战性的方法,涵盖通信工程的许多方面,从组件级别(新算法解决方案的开发及其在硬件平台上的原型设计/测试)一直到链路(整个收发器设计)和系统(网络集成/评估)级别。这促进了科学影响和工业相关性,并提供了独特的附加值HQP培训机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bellili, Faouzi其他文献

A Low-Cost and Robust Maximum Likelihood Joint Estimator for the Doppler Spread and CFO Parameters Over Flat-Fading Rayleigh Channels
  • DOI:
    10.1109/tcomm.2017.2697962
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Bellili, Faouzi;Selmi, Yassine;Ghrayeb, Ali
  • 通讯作者:
    Ghrayeb, Ali
Massive Unsourced Random Access Based on Uncoupled Compressive Sensing: Another Blessing of Massive MIMO
DOA Estimation of Temporally and Spatially Correlated Narrowband Noncircular Sources in Spatially Correlated White Noise
  • DOI:
    10.1109/tsp.2011.2157499
  • 发表时间:
    2011-09-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Ben Hassen, Sonia;Bellili, Faouzi;Affes, Sofiene
  • 通讯作者:
    Affes, Sofiene
Generalized Approximate Message Passing for Massive MIMO mmWave Channel Estimation With Laplacian Prior
  • DOI:
    10.1109/tcomm.2019.2892719
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Bellili, Faouzi;Sohrabi, Foad;Yu, Wei
  • 通讯作者:
    Yu, Wei
A Non-Data-Aided Maximum Likelihood Time Delay Estimator Using Importance Sampling
  • DOI:
    10.1109/tsp.2011.2161293
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Masmoudi, Ahmed;Bellili, Faouzi;Stephenne, Alex
  • 通讯作者:
    Stephenne, Alex

Bellili, Faouzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bellili, Faouzi', 18)}}的其他基金

Scalable and Efficient Machine-Type Communications for 5G Wireless Access and Beyond
适用于 5G 无线接入及其他技术的可扩展且高效的机器类型通信
  • 批准号:
    RGPIN-2019-05858
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable and Efficient Machine-Type Communications for 5G Wireless Access and Beyond
适用于 5G 无线接入及其他技术的可扩展且高效的机器类型通信
  • 批准号:
    RGPIN-2019-05858
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable and Efficient Machine-Type Communications for 5G Wireless Access and Beyond
适用于 5G 无线接入及其他技术的可扩展且高效的机器类型通信
  • 批准号:
    DGECR-2019-00023
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Scalable and Efficient Machine-Type Communications for 5G Wireless Access and Beyond
适用于 5G 无线接入及其他技术的可扩展且高效的机器类型通信
  • 批准号:
    RGPIN-2019-05858
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Ubiquitous Multi-Gigabits Wireless Access for the Digital Economy & Smart Societies of the 21st Century
数字经济中无处不在的多千兆无线接入
  • 批准号:
    488216-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postdoctoral Fellowships

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
  • 批准号:
    2338159
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
  • 批准号:
    2340273
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
  • 批准号:
    2345655
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2341183
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
  • 批准号:
    22KJ2450
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Efficient tuning of quantum devices using machine learning
使用机器学习有效调整量子器件
  • 批准号:
    2886876
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Efficient Secure Multi-Party Computation Framework for Privacy-Preserving Machine Learning
用于保护隐私的机器学习的高效安全多方计算框架
  • 批准号:
    22KF0098
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了