PECASE: Compressive Cooperative Sensing and Navigation in Mobile Networks
PECASE:移动网络中的压缩协作感知和导航
基本信息
- 批准号:0846483
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2012-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this Faculty Early Career Development (CAREER) project is to develop the foundations of sensing and navigation in mobile cooperative networks from a compressive sampling perspective. A mobile ooperative network faces an abundance of information in its environment. Since there is not enough time for direct measurement of the whole terrain, finding the fundamental minimum sensing required for high-integrity and cooperative reconstruction of the parameter of interest is considerably important and an open problem. Currently, there is no analysis and design theory for ooperative mapping based on a severely under-determined data set. onsequently, a avigation framework that can guide the vehicles to the locations better for sparse sensing is also lacking. Inspired by the recent breakthroughs in non-uniform sampling theory, this proposal shows how the network can exploit the sparse transformation of the parameter of interest for cooperative mapping based on a considerably small observation set. The proposed approach provides an answer to the question of "the next best positions for sensing" in mobile networks and guides the vehicles to the locations that are better for compressed sensing/mapping. To ensure uninterrupted cooperation, it furthermore complements this by proposing a foundation for communication-aware compressive mapping. Along this line, it shows how to build realistic communication objectives that are reflective of communication unreliability such as path loss, shadowing and fading, and integrate them with compressive sensing/mapping objectives. The proposed research is fundamental in nature as it seeks to unveil the minimum sensing and communication needed for the robust operation of cooperative mobile networks. If successful, the proposed research will make a significant contribution to the understanding and optimization of mobile cooperative networks in realistic communication environments. Emergency response, exploratory missions, security and surveillance are a few examples of the applications that have to operate in an information-rich environment robustly and in a timely manner, and can therefore benefit tremendously from the proposed work. This proposal also has a significant educational impact on the Native Americans of New Mexico through partnership with Southwestern Indian Polytechnic Institute (a Native American community college) and Bernalillo High School (with 46% Native American and 46% Hispanic students). More specifically, it will l) contribute to stablishing a learning platform for the basics of control and communications at Southwestern Indian Polytechnic Institute, 2) create a echnical/educational remote site at Bernalillo High School and 3) develop a networked control course geared towards the aforementioned community college and high school students, in which these students will team up with UNM graduate students to do projects related to the learning platform.
这个教师早期职业发展(Career)项目的研究目标是从压缩采样的角度发展移动合作网络中传感和导航的基础。移动运营网络面临着环境中丰富的信息。由于没有足够的时间对整个地形进行直接测量,因此找到对感兴趣的参数进行高完整性和协作重建所需的基本最小感知是相当重要的,也是一个悬而未决的问题。目前还没有基于严重欠确定数据集的协同映射的分析和设计理论。因此,缺乏一种能够更好地引导车辆到稀疏感知位置的导航框架。受非均匀抽样理论最新突破的启发,该建议展示了网络如何利用感兴趣参数的稀疏变换进行基于相当小的观测集的合作映射。所提出的方法为移动网络中“下一个最佳感知位置”的问题提供了答案,并引导车辆到达更适合压缩感知/映射的位置。为了确保不间断的合作,它通过提出通信感知压缩映射的基础进一步补充了这一点。沿着这条线,它展示了如何构建反映通信不可靠性(如路径损失、阴影和衰落)的现实通信目标,并将它们与压缩感知/映射目标集成。拟议的研究本质上是基础性的,因为它寻求揭示协作移动网络稳健运行所需的最小传感和通信。如果研究成功,将对理解和优化现实通信环境下的移动协作网络做出重大贡献。应急反应、探索任务、安全和监视是必须在信息丰富的环境中可靠和及时地运行的应用程序的几个例子,因此可以从拟议的工作中获得巨大好处。该提案还通过与西南印第安理工学院(美国原住民社区学院)和伯纳利略高中(有46%的美国原住民和46%的西班牙裔学生)的合作,对新墨西哥州的美国原住民产生了重大的教育影响。更具体地说,它将1)在西南印度理工学院建立一个控制与通讯基础知识的学习平台,2)在Bernalillo高中建立一个技术/教育远程站点,3)针对上述社区大学和高中学生开发一个网络控制课程,这些学生将与新墨西哥大学的研究生合作,完成与学习平台相关的项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yasamin Mostofi其他文献
Path Planning for Minimizing the Expected Cost Until Success
最小化预期成本直至成功的路径规划
- DOI:
10.1109/tro.2018.2883829 - 发表时间:
2018 - 期刊:
- 影响因子:7.8
- 作者:
Arjun Muralidharan;Yasamin Mostofi - 通讯作者:
Yasamin Mostofi
Fusion and Diversity Trade-Offs in Cooperative Estimation over Fading Channels
衰落信道合作估计中的融合与多样性权衡
- DOI:
10.1109/glocom.2009.5425952 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Mehrzad Malmirchegini;Yasamin Mostofi - 通讯作者:
Yasamin Mostofi
First passage distance to connectivity for mobile robots
移动机器人连接的首次通过距离
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Arjun Muralidharan;Yasamin Mostofi - 通讯作者:
Yasamin Mostofi
Statistics of the distance traveled until successful connectivity for unmanned vehicles
统计无人车连接成功之前行驶的距离
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.5
- 作者:
Arjun Muralidharan;Yasamin Mostofi - 通讯作者:
Yasamin Mostofi
Binary log-linear learning with stochastic communication links
具有随机通信链路的二元对数线性学习
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Arjun Muralidharan;Yuan Yan;Yasamin Mostofi - 通讯作者:
Yasamin Mostofi
Yasamin Mostofi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yasamin Mostofi', 18)}}的其他基金
CNS Core: Small: Fundamentals of Gait Disorder Assessment with Ubiquitous Wireless Signals
CNS 核心:小型:利用无处不在的无线信号进行步态障碍评估的基础知识
- 批准号:
2226255 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
RI: Small: Robotic Path Planning to Reveal Wireless Rays - A New Foundation for the Optimization of Networked Robotic Operations
RI:小型:揭示无线射线的机器人路径规划 - 优化网络机器人操作的新基础
- 批准号:
2008449 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS: Small: Fundamentals of Assessing Occupancy Dynamics with Ubiquitous Wireless Signals
NetS:小型:利用无处不在的无线信号评估占用动态的基础
- 批准号:
1816931 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Robotic See-Through Imaging with Everyday RF Signals
使用日常射频信号进行机器人透视成像
- 批准号:
1611254 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RI: Small: To Ask or Not to Ask - A Foundation for the Optimization of Human-Robot Networks
RI:小:问还是不问——人机网络优化的基础
- 批准号:
1619376 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS: Small: Co-Optimization of Sensing, Communications and Navigation of a Robotic Network under Resource Constraints
NeTS:小型:资源约束下机器人网络的传感、通信和导航协同优化
- 批准号:
1321171 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
PECASE: Compressive Cooperative Sensing and Navigation in Mobile Networks
PECASE:移动网络中的压缩协作感知和导航
- 批准号:
1261614 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RI-Small: An Integrative Framework for Communication and Motion-planning in Robotic Networks Operating in Fading Environments
RI-Small:在衰落环境中运行的机器人网络中的通信和运动规划集成框架
- 批准号:
0812338 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于Compressive sensing理论的单探测器太赫兹成像技术
- 批准号:60977009
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
- 批准号:60776795
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:联合基金项目
相似海外基金
EAGER: IMPRESS-U: Exploratory Research on Generative Compression for Compressive Lidar
EAGER:IMPRESS-U:压缩激光雷达生成压缩的探索性研究
- 批准号:
2404740 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
INVESTIGATING IN VIVO COMPRESSIVE FORCES: CELL DIVISION, NUCLEAR INTEGRITY, CANCER INITIATION
研究体内压力:细胞分裂、核完整性、癌症发生
- 批准号:
MR/W024519/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Fracture limit of steels under a compressive stress state nearby uniaxial compression
近单轴压缩压应力状态下钢材的断裂极限
- 批准号:
23K04435 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multidimensional and Compressive Super-Resolution: Theory, Computation, and Fundamental Limits
多维和压缩超分辨率:理论、计算和基本限制
- 批准号:
2309602 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Compressive Subsurface Radar Imaging: fast and smart detection of buried explosive threats
压缩式地下雷达成像:快速、智能地检测埋藏的爆炸物威胁
- 批准号:
EP/X022951/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Ensuring Data Privacy in Deep Learning through Compressive Learning
通过压缩学习确保深度学习中的数据隐私
- 批准号:
EP/X03447X/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
CAREER: Theoretical Framework for Design and Analysis of Snapshot Compressive Imaging Systems
职业:快照压缩成像系统设计和分析的理论框架
- 批准号:
2237538 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Deep compressive quantitative MRI imaging
深度压缩定量 MRI 成像
- 批准号:
EP/X001091/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Applications of Infinite Dimensional Compressive Sensing to Multi-Dimensional Analog Images using Machine Learning to Enhance Results
利用机器学习将无限维压缩感知应用于多维模拟图像以增强结果
- 批准号:
2889834 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
- 批准号:
2211696 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




