CAREER: Efficient Monte Carlo Methods in Engineering and Science: From Coarse Analysis to Refined Estimators
职业:工程和科学中的高效蒙特卡罗方法:从粗略分析到精细估算器
基本信息
- 批准号:0846816
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this Faculty Early Career Development (CAREER) project is to investigate and develop a framework that exploits asymptotic analysis, expressed at a coarse scale, to systematically generate efficient rare-event simulation algorithms for complex stochastic systems, which must necessarily be implemented at a fine scale. The objective is to study five types of environments that exhibit stylized features that have not been well studied in rare-event simulation, namely, a) Stochastic recursions with heavy-tails (which are used to model insurance risk and reservoir processes), b) Heavy-tailed queues (which arise in database and networking applications), c) Counting problems and inference for combinatorial structures (arising in sociology and biology), d) Location of objects immersed in a random medium (with particular emphasis on military applications where one needs to find targets that have eluded detection for long time), and e) Random fields (which arise in settings such as oceanography, environmental studies and medical imaging). The strategy consists in connecting large deviations analysis with algorithmic design of efficient simulation estimators. A key tool that we exploit in the design and performance analysis of our algorithms is a systematic use of Lyapunov bounds for Markov chains, combined with parametric families of importance sampling distributions. Events such as environmental or natural disasters, major market crashes, pension and insurance breakdowns and terrorist attacks are rare but consequential. If successful, the proposed research program will provide efficient computational tools for risk assessment of such events which exhibit features such as heavy-tails, complex dependence and incorporation of combinatorial objects. Efficient evaluation of rare-event probabilities can provide decision makers with key quantitative policy assessment metrics and accompanying insights. Examples include computing the probability that a target is able to evade a set of detectors as well as its conditional most likely location, and assessing ruin probabilities for purposes of sizing the capital reserve of insurance and financial companies.
这个学院早期职业发展(CALEAR)项目的研究目标是研究和开发一个框架,该框架利用粗略表示的渐近分析,系统地生成复杂随机系统的有效罕见事件模拟算法,这些算法必须在精细规模上实现。其目的是研究在罕见事件模拟中尚未被很好地研究的展现风格化特征的五种环境类型,即a)具有重尾的随机递归(用于模拟保险风险和水库过程),b)重尾队列(出现在数据库和联网应用中),c)组合结构的计数问题和推理(出现在社会学和生物学中),d)沉浸在随机介质中的物体的位置(特别强调其中需要找到长期逃脱检测的目标的军事应用),以及e)随机场(出现在诸如海洋学的环境中,环境研究和医学成像)。该策略包括将大偏差分析与高效模拟估值器的算法设计相结合。我们在算法的设计和性能分析中使用的一个关键工具是系统地使用马尔可夫链的Lyapunov界,并结合重要抽样分布的参数族。环境或自然灾害、重大市场崩盘、养老金和保险崩溃以及恐怖袭击等事件很少见,但后果重大。如果成功,建议的研究计划将为这类事件的风险评估提供有效的计算工具,这些事件表现出重尾、复杂依赖和组合对象合并等特征。对罕见事件概率的有效评估可以为决策者提供关键的量化政策评估指标和相应的洞察力。例如,计算目标能够躲避一组探测器的概率及其条件最有可能的位置,以及为了调整保险和金融公司的资本储备而评估破产概率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jose Blanchet其他文献
Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes
均匀遍历贴现马尔可夫决策过程的强化学习的最优样本复杂度
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shengbo Wang;Jose Blanchet;Peter Glynn - 通讯作者:
Peter Glynn
A Model of Bed Demand to Facilitate the Implementation of Data-driven Recommendations for COVID-19 Capacity Management
床位需求模型促进实施数据驱动的 COVID-19 容量管理建议
- DOI:
10.21203/rs.3.rs-31953/v1 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Teng Zhang;Kelly A McFarlane;J. Vallon;Linying Yang;Jin Xie;Jose Blanchet;P. Glynn;Kristan Staudenmayer;K. Schulman;D. Scheinker - 通讯作者:
D. Scheinker
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
什么时候无偏蒙特卡罗估计比有偏估计更可取?
- DOI:
10.48550/arxiv.2404.01431 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Guanyang Wang;Jose Blanchet;P. Glynn - 通讯作者:
P. Glynn
Modeling shortest paths in polymeric networks using spatial branching processes
使用空间分支过程对聚合物网络中的最短路径进行建模
- DOI:
10.1016/j.jmps.2024.105636 - 发表时间:
2023 - 期刊:
- 影响因子:5.3
- 作者:
Zhenyuan Zhang;Shaswat Mohanty;Jose Blanchet;Wei Cai - 通讯作者:
Wei Cai
Efficient Steady-State Simulation of High-Dimensional Stochastic Networks
高维随机网络的高效稳态模拟
- DOI:
10.1287/stsy.2021.0077 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Jose Blanchet;Xinyun Chen;Nian Si;Peter W. Glynn - 通讯作者:
Peter W. Glynn
Jose Blanchet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jose Blanchet', 18)}}的其他基金
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229011 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312204 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
- 批准号:
2118199 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Robust Wasserstein Profile Inference
鲁棒 Wasserstein 轮廓推断
- 批准号:
1915967 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
An Approach to Robust Performance Analysis Using Optimal Transport
使用最佳传输进行鲁棒性能分析的方法
- 批准号:
1820942 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
- 批准号:
1838576 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
- 批准号:
1720451 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Perfect Simulation of Stochastic Networks
合作研究:随机网络的完美模拟
- 批准号:
1538217 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
- 批准号:
1436700 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Monte Carlo Estimation via Randomized Multilevel Methods
协作研究:通过随机多级方法进行最优蒙特卡罗估计
- 批准号:
1320550 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Efficient Monte Carlo Methods for Nonequilibrium Statistical Physics
非平衡统计物理的高效蒙特卡罗方法
- 批准号:
2012207 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Efficient Monte Carlo Algorithms for Bayesian Inference
用于贝叶斯推理的高效蒙特卡罗算法
- 批准号:
1811920 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Efficient and Robust Light Transport Simulation with adaptive (Markov Chain) Monte Carlo Methods
使用自适应(马尔可夫链)蒙特卡罗方法进行高效且鲁棒的光传输模拟
- 批准号:
405788923 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Research Grants
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
- 批准号:
222886-2013 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Design and analysis of efficient quasi-Monte Carlo sampling methods
高效准蒙特卡罗采样方法的设计与分析
- 批准号:
RGPIN-2015-04813 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
New and efficient approaches to Markov chain Monte Carlo sampling of gene genealogies conditional on observed genetic data
以观察到的遗传数据为条件的基因谱系马尔可夫链蒙特卡罗抽样的新且有效的方法
- 批准号:
222886-2013 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual