Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications

合作提案:随机过程理论与应用的强随机模拟

基本信息

  • 批准号:
    1720451
  • 负责人:
  • 金额:
    $ 20.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

High performance computing of continuous random structures arises in a large body of scientific and engineering investigations. For example, these structures are used in environmental models for floods in different geographical areas, which are subject to random measurement errors. They are also used in the prediction and mitigation planning of potential disasters. However, these random structures are impossible to capture in a computer without incurring bias, due to their continuous nature. This research project investigates a new framework for the numerical analysis of continuous random structures. It achieves stronger error control, compared to current state-of-the-art methods, at basically the same computational cost. If successful, the framework and algorithms to be investigated will facilitate analysis and performance evaluation of fundamental random structures of interests to a broad community of scientists and engineers. To enhance the broader impact, the Principal Investigators will train graduate students through research and integrate the results from this research into new graduate courses in scientific computing. This project investigates a new Monte Carlo framework for continuous stochastic structures (such as differential equations and random fields). The main innovative feature of the framework is the ability to approximate a continuous random object by a fully simulatable (typically piece-wise constant) object with a uniform error bound in the path space with 100% certainty. The error bound is user-specified and can be sequentially refined. Research projects involve developing simulation algorithms for fundamental random structures of interests. These include: Gaussian random fields, Levy processes, fractional Brownian motion, max-stable fields, etc. The algorithms are scalable in the sense of being easily extendable to more complex models by applying the continuous mapping principle with quantifiable error analysis. An important aspect of the methodology is the connection established between Monte Carlo simulation and the theory of rough paths in the setting of stochastic analysis.
连续随机结构的高性能计算在大量的科学和工程研究中出现。例如,这些结构被用于不同地理区域的洪水环境模型,这些模型受到随机测量误差的影响。它们还用于潜在灾害的预测和减灾规划。然而,由于这些随机结构的连续性,它们不可能在不产生偏差的情况下在计算机中捕获。本课题研究了一种连续随机结构数值分析的新框架。与目前最先进的方法相比,它实现了更强的误差控制,而计算成本基本相同。如果成功,所研究的框架和算法将促进对广大科学家和工程师感兴趣的基本随机结构的分析和性能评估。为了加强更广泛的影响,首席研究员将通过研究培养研究生,并将研究结果整合到科学计算的新研究生课程中。本项目研究连续随机结构(如微分方程和随机场)的一种新的蒙特卡罗框架。该框架的主要创新特征是能够通过完全可模拟的(通常是分段常量)对象来近似连续随机对象,该对象在路径空间中具有100%确定性的统一误差界。错误界限由用户指定,可以按顺序进行细化。研究项目包括为感兴趣的基本随机结构开发模拟算法。这些包括:高斯随机场,列维过程,分数布朗运动,最大稳定场等。该算法具有可扩展性,通过应用连续映射原理和可量化的误差分析,可以很容易地扩展到更复杂的模型。该方法的一个重要方面是在随机分析的背景下建立了蒙特卡罗模拟和粗糙路径理论之间的联系。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perfect sampling of GI/GI/c queues
  • DOI:
    10.1007/s11134-018-9573-2
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    J. Blanchet;Jing Dong;Yanan Pei
  • 通讯作者:
    J. Blanchet;Jing Dong;Yanan Pei
Exact sampling for some multi-dimensional queueing models with renewal input
具有更新输入的某些多维排队模型的精确采样
  • DOI:
    10.1017/apr.2019.45
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Blanchet, Jose;Pei, Yanan;Sigman, Karl
  • 通讯作者:
    Sigman, Karl
Exact sampling of the infinite horizon maximum of a random walk over a nonlinear boundary
非线性边界上随机游走的无限水平最大值的精确采样
  • DOI:
    10.1017/jpr.2019.9
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Blanchet, Jose;Dong, Jing;Liu, Zhipeng
  • 通讯作者:
    Liu, Zhipeng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Blanchet其他文献

Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes
均匀遍历贴现马尔可夫决策过程的强化学习的最优样本复杂度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengbo Wang;Jose Blanchet;Peter Glynn
  • 通讯作者:
    Peter Glynn
A Model of Bed Demand to Facilitate the Implementation of Data-driven Recommendations for COVID-19 Capacity Management
床位需求模型促进实施数据驱动的 COVID-19 容量管理建议
  • DOI:
    10.21203/rs.3.rs-31953/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teng Zhang;Kelly A McFarlane;J. Vallon;Linying Yang;Jin Xie;Jose Blanchet;P. Glynn;Kristan Staudenmayer;K. Schulman;D. Scheinker
  • 通讯作者:
    D. Scheinker
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
什么时候无偏蒙特卡罗估计比有偏估计更可取?
  • DOI:
    10.48550/arxiv.2404.01431
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guanyang Wang;Jose Blanchet;P. Glynn
  • 通讯作者:
    P. Glynn
Modeling shortest paths in polymeric networks using spatial branching processes
使用空间分支过程对聚合物网络中的最短路径进行建模
Efficient Steady-State Simulation of High-Dimensional Stochastic Networks
高维随机网络的高效稳态模拟
  • DOI:
    10.1287/stsy.2021.0077
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jose Blanchet;Xinyun Chen;Nian Si;Peter W. Glynn
  • 通讯作者:
    Peter W. Glynn

Jose Blanchet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Blanchet', 18)}}的其他基金

Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312204
  • 财政年份:
    2023
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
  • 批准号:
    2118199
  • 财政年份:
    2021
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Continuing Grant
Robust Wasserstein Profile Inference
鲁棒 Wasserstein 轮廓推断
  • 批准号:
    1915967
  • 财政年份:
    2019
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Continuing Grant
An Approach to Robust Performance Analysis Using Optimal Transport
使用最佳传输进行鲁棒性能分析的方法
  • 批准号:
    1820942
  • 财政年份:
    2018
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1838576
  • 财政年份:
    2018
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Perfect Simulation of Stochastic Networks
合作研究:随机网络的完美模拟
  • 批准号:
    1538217
  • 财政年份:
    2015
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
  • 批准号:
    1436700
  • 财政年份:
    2014
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Monte Carlo Estimation via Randomized Multilevel Methods
协作研究:通过随机多级方法进行最优蒙特卡罗估计
  • 批准号:
    1320550
  • 财政年份:
    2013
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Monte Carlo Methods in Engineering and Science: From Coarse Analysis to Refined Estimators
职业:工程和科学中的高效蒙特卡罗方法:从粗略分析到精细估算器
  • 批准号:
    0846816
  • 财政年份:
    2009
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Standard Grant

相似海外基金

RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
  • 批准号:
    2908868
  • 财政年份:
    2024
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
  • 批准号:
    EP/Y034392/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Research Grant
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
  • 批准号:
    2413980
  • 财政年份:
    2024
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
  • 批准号:
    2424057
  • 财政年份:
    2024
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
  • 批准号:
    2341300
  • 财政年份:
    2024
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
  • 批准号:
    ES/Y003411/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Research Grant
Lite(House) - A Financially Flexible, Adaptive and Efficient Live/Work Housing Proposal
Lite(House) - 财务灵活、适应性强且高效的生活/工作住房提案
  • 批准号:
    10071140
  • 财政年份:
    2023
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Collaborative R&D
Proposal of effective utilization of polyphenols as functional food ingredients for realization of a healthy longevity society
有效利用多酚作为功能性食品成分以实现健康长寿社会的提案
  • 批准号:
    23K10889
  • 财政年份:
    2023
  • 资助金额:
    $ 20.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了