An Approach to Robust Performance Analysis Using Optimal Transport

使用最佳传输进行鲁棒性能分析的方法

基本信息

  • 批准号:
    1820942
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this research is to investigate a comprehensive set of tools to enable robust performance analysis and decision making by building a framework which systematically evaluates the impact of modeling errors. The general philosophy of this research is as follows. Stochastic models are used virtually everywhere and many of these models are convenient because they can be easily calibrated and/or because performance analysis or optimization can be easily done in closed form or algorithmically. But we all recognize that there are trade-offs between the model's fidelity (i.e. their ability to replicate reality) and its tractability. This project investigates a systematic approach which can be used to account for the impact of this trade-off. The PI studies a wide range of models called stochastic networks, which are used to describe virtually any probabilistic system in which there is resource contention. These systems are used in logistics, transportation, communications and systemic risk, among others. The PI plans to apply the developed approach to study robustness questions related to stochastic networks in heavy-traffic utilization and rare events in such systems. This project investigates a comprehensive set of tools which enables the quantification of model errors in the performance analysis and control of a wide range of stochastic systems. The investigator's strategy combines various areas of mathematics, including convex optimization, probability theory, and Monte Carlo methods. The investigator will exploit general duality results which are used to obtain explicit expressions for worst-case expectations among all probability models within a certain tolerance from a baseline probabilistic model (typically chosen for tractability). The metric describing the neighborhood of models is based on optimal transport theory. These results are applicable at the stochastic-process level (for random elements taken values on general Polish spaces), so they can be used to approximate sample-path expectations of complex stochastic systems. A key element in the program is that the worst-case probability of a given event can be expressed explicitly in terms of the probability of a modified (explicit) event under the baseline (tractable) model. The investigator will study a wide range of questions related to rare-event analysis and heavy-traffic approximations of stochastic networks, which are widely used in application areas such as communication networks, call centers, manufacturing systems, and chemical reaction networks, among others.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究的目标是研究一套全面的工具,通过建立一个框架来系统地评估建模错误的影响,从而实现强大的性能分析和决策。本研究的总体思路如下。随机模型几乎无处不在,其中许多模型都很方便,因为它们可以很容易地校准和/或因为性能分析或优化可以很容易地以封闭形式或算法完成。但我们都认识到,在模型的保真度(即它们复制现实的能力)和可追溯性之间存在权衡。这个项目研究了一种系统的方法,可以用来解释这种权衡的影响。PI研究了广泛的称为随机网络的模型,这些模型用于描述几乎任何存在资源争夺的概率系统。这些系统用于物流、运输、通信和系统风险等领域。PI计划将开发的方法应用于研究与大流量利用和此类系统中罕见事件的随机网络相关的鲁棒性问题。该项目研究了一套全面的工具,这些工具可以量化各种随机系统的性能分析和控制中的模型误差。研究者的策略结合了数学的各个领域,包括凸优化,概率论和蒙特卡罗方法。研究者将利用一般对偶结果,这些结果用于从基线概率模型(通常为可追溯性而选择)获得在一定公差范围内的所有概率模型中最坏情况期望的显式表达式。描述模型邻域的度量基于最优输运理论。这些结果适用于随机过程水平(对于在一般波兰空间上取值的随机元素),因此它们可用于近似复杂随机系统的样本路径期望。程序中的一个关键因素是,给定事件的最坏情况概率可以根据基线(可处理)模型下修改(显式)事件的概率显式表示。研究者将研究与随机网络的罕见事件分析和大流量近似相关的广泛问题,这些问题广泛应用于通信网络、呼叫中心、制造系统和化学反应网络等应用领域。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Optimal Transport Cost Selection For Distributionally Robust Optimization
  • DOI:
    10.1109/wsc40007.2019.9004785
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Blanchet;Yang Kang;Karthyek Murthy;Fan Zhang
  • 通讯作者:
    J. Blanchet;Yang Kang;Karthyek Murthy;Fan Zhang
Distributionally Robust Policy Evaluation and Learning in Offline Contextual Bandits
离线上下文强盗中的分布式鲁棒策略评估和学习
On distributionally robust extreme value analysis
分布稳健极值分析
  • DOI:
    10.1007/s10687-019-00371-1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Blanchet, Jose;He, Fei;Murthy, Karthyek
  • 通讯作者:
    Murthy, Karthyek
Optimal uncertainty size in distributionally robust inverse covariance estimation
分布鲁棒逆协方差估计中的最佳不确定性大小
  • DOI:
    10.1016/j.orl.2019.10.005
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Blanchet, Jose;Si, Nian
  • 通讯作者:
    Si, Nian
Multivariate Distributionally Robust Convex Regression under Absolute Error Loss
绝对误差损失下的多元分布鲁棒凸回归
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Blanchet其他文献

Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes
均匀遍历贴现马尔可夫决策过程的强化学习的最优样本复杂度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengbo Wang;Jose Blanchet;Peter Glynn
  • 通讯作者:
    Peter Glynn
A Model of Bed Demand to Facilitate the Implementation of Data-driven Recommendations for COVID-19 Capacity Management
床位需求模型促进实施数据驱动的 COVID-19 容量管理建议
  • DOI:
    10.21203/rs.3.rs-31953/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teng Zhang;Kelly A McFarlane;J. Vallon;Linying Yang;Jin Xie;Jose Blanchet;P. Glynn;Kristan Staudenmayer;K. Schulman;D. Scheinker
  • 通讯作者:
    D. Scheinker
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
什么时候无偏蒙特卡罗估计比有偏估计更可取?
  • DOI:
    10.48550/arxiv.2404.01431
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guanyang Wang;Jose Blanchet;P. Glynn
  • 通讯作者:
    P. Glynn
Modeling shortest paths in polymeric networks using spatial branching processes
使用空间分支过程对聚合物网络中的最短路径进行建模
Efficient Steady-State Simulation of High-Dimensional Stochastic Networks
高维随机网络的高效稳态模拟
  • DOI:
    10.1287/stsy.2021.0077
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jose Blanchet;Xinyun Chen;Nian Si;Peter W. Glynn
  • 通讯作者:
    Peter W. Glynn

Jose Blanchet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Blanchet', 18)}}的其他基金

Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312204
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
  • 批准号:
    2118199
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Robust Wasserstein Profile Inference
鲁棒 Wasserstein 轮廓推断
  • 批准号:
    1915967
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1838576
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Strong Stochastic Simulation of Stochastic Processes Theory and Applications
合作提案:随机过程理论与应用的强随机模拟
  • 批准号:
    1720451
  • 财政年份:
    2017
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Perfect Simulation of Stochastic Networks
合作研究:随机网络的完美模拟
  • 批准号:
    1538217
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
  • 批准号:
    1436700
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Monte Carlo Estimation via Randomized Multilevel Methods
协作研究:通过随机多级方法进行最优蒙特卡罗估计
  • 批准号:
    1320550
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Monte Carlo Methods in Engineering and Science: From Coarse Analysis to Refined Estimators
职业:工程和科学中的高效蒙特卡罗方法:从粗略分析到精细估算器
  • 批准号:
    0846816
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Performance-Driven Robust Topology Optimization of Functionally Graded Lattice Structures
功能梯度晶格结构的性能驱动的鲁棒拓扑优化
  • 批准号:
    EP/Y023455/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Fellowship
Theory and Application for Robust and High-Performance Systems Programming Languages
鲁棒高性能系统编程语言的理论与应用
  • 批准号:
    22KJ0561
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Uniquely high conversion and mechanically robust composite restorative materials for functionally elevated performance
独特的高转化率和机械坚固的复合修复材料,可提高功能性能
  • 批准号:
    10646845
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Smart high performance concrete composites for developing robust and resilient infrastructures
智能高性能混凝土复合材料,用于开发坚固且有弹性的基础设施
  • 批准号:
    RGPIN-2019-05613
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Realization of highly robust, high-performance, low-cost high-temperature superconducting coil systems without protection
实现高鲁棒、高性能、低成本的无保护高温超导线圈系统
  • 批准号:
    22H01478
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
FEA-SMC: Enabling short fibre composites in high-performance aerospace applications through robust simulation technology
FEA-SMC:通过强大的仿真技术在高性能航空航天应用中实现短纤维复合材料
  • 批准号:
    10037901
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    BEIS-Funded Programmes
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10684375
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10570160
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
STTR Phase I: Robust High-Performance Organic Electro-Optic Materials
STTR 第一阶段:稳健的高性能有机电光材料
  • 批准号:
    2036514
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Smart high performance concrete composites for developing robust and resilient infrastructures
智能高性能混凝土复合材料,用于开发坚固且有弹性的基础设施
  • 批准号:
    RGPIN-2019-05613
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了