A Bayesian State Space Methodology for Forecasting Stock Market Volatility and Associated Time-varying Risk Premia
预测股票市场波动性和相关时变风险溢价的贝叶斯状态空间方法
基本信息
- 批准号:FT0991045
- 负责人:
- 金额:$ 59.51万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:ARC Future Fellowships
- 财政年份:2010
- 资助国家:澳大利亚
- 起止时间:2010-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accurate prediction of stock market volatility is critical for effective financial risk management. Along with information on volatility embedded in historical stock market returns, the prices of options written on the underlying stocks also reflect the option market's assessment of future volatility. This project will exploit this dual data source in a completely new way, using it to produce forecasts of both volatility itself and the premia factored into asset prices as a result of traders' perceptions of volatility risk. State-of-the-art statistical methods will be used to produce up-dates of the probability of extreme volatility and/or extreme risk aversion, as new market data becomes available each trading day.
准确预测股票市场波动性是有效管理金融风险的关键。沿着历史股票市场收益中的波动性信息,标的股票期权的价格也反映了期权市场对未来波动性的评估。该项目将以一种全新的方式利用这一双重数据源,利用它来预测波动性本身以及交易员对波动性风险的看法导致的计入资产价格的溢价。随着每个交易日出现新的市场数据,将使用最先进的统计方法来更新极端波动和/或极端风险规避的概率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Gael Martin其他文献
Prof Gael Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Gael Martin', 18)}}的其他基金
The validation of approximate Bayesian computation
近似贝叶斯计算的验证
- 批准号:
DP170100729 - 财政年份:2017
- 资助金额:
$ 59.51万 - 项目类别:
Discovery Projects
Approximate Bayesian computation in state space models
状态空间模型中的近似贝叶斯计算
- 批准号:
DP150101728 - 财政年份:2015
- 资助金额:
$ 59.51万 - 项目类别:
Discovery Projects
Non-parametric estimation of forecast distributions in non-Gaussian state space models
非高斯状态空间模型中预测分布的非参数估计
- 批准号:
DP0985234 - 财政年份:2009
- 资助金额:
$ 59.51万 - 项目类别:
Discovery Projects
New Statistical Procedures for Analysing Dependence in Non-Gaussian Time Series Data
用于分析非高斯时间序列数据依赖性的新统计程序
- 批准号:
DP0664121 - 财政年份:2006
- 资助金额:
$ 59.51万 - 项目类别:
Discovery Projects
New Approaches to the Analysis of Count Time Series
计数时间序列分析的新方法
- 批准号:
DP0450257 - 财政年份:2004
- 资助金额:
$ 59.51万 - 项目类别:
Discovery Projects
Persistence in Economic Time Series: Interpretation, Measurement and Inference
经济时间序列的持久性:解释、测量和推理
- 批准号:
DP0208333 - 财政年份:2002
- 资助金额:
$ 59.51万 - 项目类别:
Discovery Projects
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
- 批准号:61701437
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 59.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Variational Inference for Intractable and Misspecified State Space Models
棘手且错误指定的状态空间模型的变分推理
- 批准号:
DE230100029 - 财政年份:2023
- 资助金额:
$ 59.51万 - 项目类别:
Discovery Early Career Researcher Award
Mapping the single cell state basis of metastasis in space and time
绘制空间和时间转移的单细胞状态基础
- 批准号:
10738579 - 财政年份:2023
- 资助金额:
$ 59.51万 - 项目类别:
Development of Deep Machine Learning Method for Generalized State Space Models Using Prior Knowledge Constraints and Weak Learning
使用先验知识约束和弱学习的广义状态空间模型深度机器学习方法的开发
- 批准号:
23H00471 - 财政年份:2023
- 资助金额:
$ 59.51万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
REU Site: Space Physics and Solar Astrophysics Program at Montana State University
REU 站点:蒙大拿州立大学空间物理和太阳天体物理项目
- 批准号:
2244344 - 财政年份:2023
- 资助金额:
$ 59.51万 - 项目类别:
Standard Grant
In-situ Measurement Techniques for Space and Planetary Plasmas Challenged by State-of-the-art Analysis Principle and Innovative Signal Processing
空间和行星等离子体的原位测量技术受到最先进分析原理和创新信号处理的挑战
- 批准号:
23K17701 - 财政年份:2023
- 资助金额:
$ 59.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Space Optimization, Allergen Mitigation, and Improved Microenvironmental Conditions in a Shared Use Animal Facility at Florida State University
佛罗里达州立大学共享动物设施的空间优化、过敏原缓解和改善微环境条件
- 批准号:
10735627 - 财政年份:2023
- 资助金额:
$ 59.51万 - 项目类别:
Development of Algorithm for Estimating Seismic Damage of Buried Pipelines Using State-Vector Space on Road Surface Ground Failures
路面地面破坏状态向量空间估计埋地管道地震损伤算法的开发
- 批准号:
22K18303 - 财政年份:2022
- 资助金额:
$ 59.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Detailed CB equations in QBD processes with explosive state space and its applications to queueing models
具有爆炸状态空间的QBD过程中的详细CB方程及其在排队模型中的应用
- 批准号:
22K11923 - 财政年份:2022
- 资助金额:
$ 59.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Building Foundation for CPS Security Risk Evaluation based on Continuous State-Space Model
基于连续状态空间模型的CPS安全风险评估奠定基础
- 批准号:
22K21272 - 财政年份:2022
- 资助金额:
$ 59.51万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




