Rational Design of High-Purity Carbon Nanotube Dispersions Through Acute and Full Life-CycleToxicity Studies

通过急性全生命周期毒性研究合理设计高纯度碳纳米管分散体

基本信息

  • 批准号:
    0853347
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-15 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

Proposal Title: Rational Design of High-Purity Carbon Nanotube Dispersions through Acute and Full Life-Cycle Toxicity Studies Principal Investigator: Kirk Ziegler Institution: University of FloridaProposal No: CBET- 0853347 This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The dramatic increase in production rates of single-walled carbon nanotubes (SWNTs) and the anticipated widespread use of SWNTs in commercial and industrial applications suggest that these manufactured nanomaterials will inevitably enter the environment including the biosphere. In addition, there is a growing concern because of the currently unknown environmental and human health impacts of SWNTs. Besides the toxicity issues common to all nanomaterials, the environmental and human health implications of SWNTs are complicated by the presence of impurities, such as the transition metal catalyst, and aggregation state. These issues are also important problems to resolve in most SWNT applications. Challenges still remain in purifying and dispersing SWNTs without detrimentally affecting the unique size-related characteristics such as strength, elasticity, high adsorption capacity, and controllable conductivity. Future applications of nanotubes will be limited unless new approaches are developed to overcome these issues without impacting the unique properties of SWNTs. Their long term goal is to develop stable, high-purity, SWNT dispersions based on large-scale processes that minimize the risks to the environment and human health. They hypothesize that the environmental and human health impacts of engineered SWNTs can be reduced or eliminated through intimate coupling of toxicity testing and manufacturing during the production process. Environmentally benign manufacturing is an important goal for the emerging nanomaterial industries, ensuring that risks to human health and the environment are minimal. Indeed, nanotube processing has a tremendous opportunity to evolve as a "green" process, benefiting from the experience of previous industrial enterprises. To test the hypothesis, engineering, chemistry, and toxicology will be integrated into a preemptive experimental approach. If necessary, toxicity assessments will dictate refinement of the SWNT purification and dispersion processes to reduce their potential hazard. This novel feedback feature intimately couples manufacturing with toxicity tests of produced SWNTs evaluated after each of the following key production steps: (1) synthesis and dry powder production (baseline toxicity); (2) purification; and (3) dispersion. This work may provide a purification process which can achieve high purities and high yields of SWNTs without causing damage to the tubular structures while simultaneously minimizing risks to the environment. Aside from the benefits of developing an environmental-friendly manufacturing process, this work will enable and accelerate nanotube applications impacting energy technologies, materials science, nanoelectronic, bionanotechnology, and medical fields.A recent framework established by DuPont and Environmental Defense encourages the evaluation of toxicity effects at the design stage of nanomaterials so new, environmental-friendly processes can be developed. The successful completion of this project will help identify the mechanisms by which SWNT dispersions affect aquatic organisms. It is expected that this fundamental information will help reduce/eliminate the potential negative impacts of SWNTs. An additional objective of this project is to disseminate the lessons learned from this research and develop an educational program targeting undergraduate students, especially from underrepresented groups. Nanotechnology is a new frontier for the scientists and engineers of the 21st century. NSF estimates that 2 million workers will be needed to support future nanotechnology industry needs. However, the decreasing enrollment of U.S. students in science, technology, engineering, and mathematics (STEM) degrees make it challenging to prepare the needed workforce. The PIs are currently developing modules for a sequence of two undergraduate courses aimed at integrating nanotechnology and its environmental, societal, and health implications into the current undergraduate curricula. These courses will, therefore, be used as a vehicle to integrate their exciting research findings into new educational materials.
提案标题:通过急性和全生命周期毒性研究合理设计高纯度碳纳米管分散体 首席研究员:Kirk Ziegler 机构:佛罗里达大学提案编号:CBET- 0853347 该奖项由 2009 年美国复苏和再投资法案(公法 111-5)资助。单壁碳纳米管生产率的大幅提高 (单壁碳纳米管)以及单壁碳纳米管在商业和工业应用中的预期广泛使用表明,这些人造纳米材料将不可避免地进入包括生物圈在内的环境。此外,由于目前未知的单壁碳纳米管对环境和人类健康的影响,人们越来越担心。 除了所有纳米材料共有的毒性问题外,单壁碳纳米管对环境和人类健康的影响因过渡金属催化剂等杂质和聚集态的存在而变得复杂。 这些问题也是大多数单壁碳纳米管应用中需要解决的重要问题。 在不对独特的尺寸相关特性(例如强度、弹性、高吸附能力和可控电导率)产生不利影响的情况下纯化和分散单壁碳纳米管仍然存在挑战。 除非开发出新方法来克服这些问题而不影响单壁碳纳米管的独特性质,否则纳米管的未来应用将受到限制。 他们的长期目标是基于大规模工艺开发稳定、高纯度的单壁碳纳米管分散体,最大限度地降低对环境和人类健康的风险。 他们假设,通过在生产过程中紧密结合毒性测试和制造,可以减少或消除工程化单壁碳纳米管对环境和人类健康的影响。 环境友好型制造是新兴纳米材料行业的一个重要目标,确保对人类健康和环境的风险降至最低。 事实上,受益于以前工业企业的经验,纳米管加工有巨大的机会发展为“绿色”工艺。 为了验证这一假设,工程、化学和毒理学将被整合到先发性的实验方法中。 如有必要,毒性评估将要求改进单壁碳纳米管纯化和分散工艺,以减少其潜在危害。 这种新颖的反馈功能将制造与在以下每个关键生产步骤后评估的单壁碳纳米管毒性测试紧密结合:(1)合成和干粉生产(基线毒性); (2)纯化; (3)分散性。 这项工作可以提供一种纯化方法,可以实现单壁碳纳米管的高纯度和高产率,而不会对管状结构造成损坏,同时最大限度地减少对环境的风险。 除了开发环保制造工艺的好处外,这项工作还将促进和加速影响能源技术、材料科学、纳米电子、生物纳米技术和医学领域的纳米管应用。杜邦和环境保护部最近建立的框架鼓励在纳米材料的设计阶段评估毒性效应,以便开发新的环保工艺。 该项目的成功完成将有助于确定单壁碳纳米管分散体影响水生生物的机制。 预计这一基本信息将有助于减少/消除单壁碳纳米管的潜在负面影响。 该项目的另一个目标是传播从这项研究中汲取的经验教训,并制定针对本科生(尤其是代表性不足群体)的教育计划。 纳米技术是 21 世纪科学家和工程师的新前沿。 NSF 估计将需要 200 万名工人来支持未来纳米技术行业的需求。 然而,美国科学、技术、工程和数学 (STEM) 学位学生的入学人数不断减少,使得准备所需的劳动力变得充满挑战。 PI 目前正在开发一系列两门本科课程的模块,旨在将纳米技术及其对环境、社会和健康的影响纳入当前的本科课程。因此,这些课程将被用作将他们令人兴奋的研究成果整合到新的教育材料中的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kirk Ziegler其他文献

MP23-04 COLORIMETRIC, PH-RESPONSIVE MEMBRANES ALLOW FOR IMMEDIATE, REAL-TIME AND REVERSIBLE URINE MONITORING IN A MULTIPART SYSTEM FOR DETECTION OF CHANGES SECONDARY TO UREASE-PRODUCING BACTERIA
  • DOI:
    10.1016/j.juro.2017.02.732
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cory French;Madeline Fuchs;Hammad Huda;Neal Patel;Brandey Andersen;Kirk Ziegler;Victoria Bird
  • 通讯作者:
    Victoria Bird

Kirk Ziegler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kirk Ziegler', 18)}}的其他基金

Measuring the Surface Energy of Metals through Structure-Property Analysis of Electrodeposition Instabilities
通过电镀不稳定性的结构-性能分析测量金属的表面能
  • 批准号:
    2004527
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Smart gate membranes for highly selective removal of carbon dioxide from combustion gases
智能门膜可高度选择性地去除燃烧气体中的二氧化碳
  • 批准号:
    1709784
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Modeling the Charge Transport of Nanowire-based Dye-Sensitized Solar Cells
模拟基于纳米线的染料敏化太阳能电池的电荷传输
  • 批准号:
    1033736
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Exploiting DNS in 3D Design
在 3D 设计中利用 DNS
  • 批准号:
    2777188
  • 财政年份:
    2026
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
High Performance Reefable Wingsail Rig Design and Pre-deployment Trial
高性能可折叠翼帆装置设计和预部署试验
  • 批准号:
    10092779
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Collaborative R&D
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    EU-Funded
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
  • 批准号:
    AH/Z505559/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Experiment-numerical-virtual Generative Design for Nondeterministic Impacts
非确定性影响的实验数值虚拟生成设计
  • 批准号:
    DP240102559
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Projects
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了