Modeling the Charge Transport of Nanowire-based Dye-Sensitized Solar Cells
模拟基于纳米线的染料敏化太阳能电池的电荷传输
基本信息
- 批准号:1033736
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1033736ZieglerIntellectual MeritEfficiencies of traditional dye-sensitized solar cells (DSSCs) based on nanoparticle thin films are limited by the competition between electron injection and the loss mechanisms from interfacial charge recombination and back reactions. Without a localized field driving electrons to the current collector, interfacial electrons can recombine with the photoactive dye or back-react with the electrolyte. These undesirable losses limit the photoanode thickness and maximum conversion efficiency. Nanowire arrays are promising architectures that have improved electron transport and charge injection due to an electric field. However, DSSC devices based on nanowire-based photoanodes thus far have not been able to take full advantage of the benefits that nanowires offer to electron transport, short circuit current, and open circuit voltage. The objective of this proposal is to develop a model that simulates the performance of nanowire-based DSSCs so that field-assisted charge transport effects within these devices can be understood and used more effectively. The proposed work will focus on combining a charge transport model which accounts for the interfacial electric field with experimental studies to validate the transport dynamics and conversion efficiencies calculated for nanowire-based DSSCs. The anodic-alumina-oxide templating approach used to fabricate the semiconductor oxide nanowires takes advantage of the great flexibility in preparing nanowires with different types of materials, aspect ratios, and spacing. This flexibility allows the systematic study of the effect of field-assisted electron transport on DSSC efficiency. The developed model can be used to determine the fabrication parameters (i.e. nanowire diameter, shell thickness, length, and array density) required to maximize efficiency. These results may also provide new insight into the controlling key reactions or processes in charge transport for DSSCs.Broader ImpactsBeyond photovoltaic applications, the development of nanowire arrays is important to electronic, optoelectronic, environmental, and biomedical applications. The proposed education and outreach activities leverage existing successful programs at the University of Florida (UF). An engineering course sequence in nanotechnology developed through previous a NSF CCLI (Course, Curriculum, and Laboratory Improvement) grant at UF will be enhanced to include solar photovoltaics. Opportunities for undergraduates to participate in the proposed research will be provided through the UF University Scholars Program. Students from under-represented groups will be mentored UF University Minority Mentoring Program through interactions with the PI in the context of the proposed research. Short courses for school teachers on renewable energy and nanomaterials will be offered through the UF Teachers as Scholars Program. High school students will be recruited for summer experiences through the UF Student Science Training Program.
基于纳米颗粒薄膜的传统染料敏化太阳能电池(DSSC)的效率受到电子注入与来自界面电荷复合和背反应的损耗机制之间的竞争的限制。 在没有将电子驱动到集电器的局部场的情况下,界面电子可以与光活性染料复合或与电解质反向反应。 这些不期望的损耗限制了光电阳极的厚度和最大转换效率。 纳米线阵列是有前途的架构,其由于电场而具有改善的电子传输和电荷注入。 然而,DSSC设备的基础上基于纳米线的光阳极迄今还不能充分利用的好处,纳米线提供的电子传输,短路电流,和开路电压。 本提案的目的是开发一个模型,模拟的性能,基于锗的DSSC,使这些设备内的场辅助电荷传输效应可以被理解和更有效地使用。 拟议的工作将侧重于结合电荷传输模型,该模型考虑了界面电场与实验研究,以验证传输动力学和转换效率计算的基于硅藻土的DSSC。 用于制造半导体氧化物纳米线的阳极-氧化铝-氧化物模板法利用了制备具有不同类型材料、纵横比和间距的纳米线的极大灵活性。 这种灵活性允许系统地研究场辅助电子输运对DSSC效率的影响。 所开发的模型可用于确定所需的制造参数(即纳米线直径,壳厚度,长度和阵列密度),以最大限度地提高效率。 这些结果也可能提供新的洞察到控制的关键反应或过程中的电荷传输DSSCs.Broader ImpactsBeyond光伏应用,纳米线阵列的发展是重要的电子,光电,环境和生物医学应用。 拟议的教育和推广活动利用佛罗里达大学(UF)现有的成功计划。 通过以前的NSF CCLI(课程,课程和实验室改进)补助金在UF开发的纳米技术工程课程序列将得到加强,包括太阳能光伏。 本科生参与拟议的研究的机会将通过UF大学学者计划提供。 来自代表性不足的群体的学生将通过与PI在拟议的研究背景下的互动辅导用友大学少数民族辅导计划。 可再生能源和纳米材料学校教师的短期课程将通过UF教师学者计划提供。 高中学生将通过UF学生科学培训计划招募夏季经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirk Ziegler其他文献
MP23-04 COLORIMETRIC, PH-RESPONSIVE MEMBRANES ALLOW FOR IMMEDIATE, REAL-TIME AND REVERSIBLE URINE MONITORING IN A MULTIPART SYSTEM FOR DETECTION OF CHANGES SECONDARY TO UREASE-PRODUCING BACTERIA
- DOI:
10.1016/j.juro.2017.02.732 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Cory French;Madeline Fuchs;Hammad Huda;Neal Patel;Brandey Andersen;Kirk Ziegler;Victoria Bird - 通讯作者:
Victoria Bird
Kirk Ziegler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirk Ziegler', 18)}}的其他基金
Measuring the Surface Energy of Metals through Structure-Property Analysis of Electrodeposition Instabilities
通过电镀不稳定性的结构-性能分析测量金属的表面能
- 批准号:
2004527 - 财政年份:2020
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Smart gate membranes for highly selective removal of carbon dioxide from combustion gases
智能门膜可高度选择性地去除燃烧气体中的二氧化碳
- 批准号:
1709784 - 财政年份:2017
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Rational Design of High-Purity Carbon Nanotube Dispersions Through Acute and Full Life-CycleToxicity Studies
通过急性全生命周期毒性研究合理设计高纯度碳纳米管分散体
- 批准号:
0853347 - 财政年份:2009
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
相似国自然基金
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
Sema3E在CHARGE综合症中的作用及机制研究
- 批准号:81160144
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
- 批准号:
2325147 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Understanding the role of organic ligands on charge transport and photocurrent generation in layered perovskites
了解有机配体对层状钙钛矿中电荷传输和光电流产生的作用
- 批准号:
2892542 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Studentship
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
- 批准号:
2868548 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Studentship
Charge Transport in Symmetry Breaking Conjugated Molecular Materials: Experimental Approach by Conductivity Measurements under CPL Excitation
对称破缺共轭分子材料中的电荷传输:CPL 激励下电导率测量的实验方法
- 批准号:
23KF0045 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: CAS: A Building Block Approach to Study Charge Transport: From Single-Molecule to Bulk
职业:CAS:研究电荷传输的构建方法:从单分子到整体
- 批准号:
2239614 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
LEAPS-MPS: Time- and depth-resolved charge carrier transport in phase stable hybrid perovskites
LEAPS-MPS:相稳定杂化钙钛矿中的时间和深度分辨载流子传输
- 批准号:
2316827 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Charge Transport and Carrier-Phonon Interactions in Soft Lattice Metal Halide Perovskites
软晶格金属卤化物钙钛矿中的电荷传输和载流子-声子相互作用
- 批准号:
2324943 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Improvement of efficiency of light-energy conversion devices by introducing metal complexes and charge transport layers
通过引入金属配合物和电荷传输层提高光能转换器件的效率
- 批准号:
23K04908 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electrically Conductive 2D Metal-Organic Frameworks and Covalent Organic Frameworks Featuring Built-in Alternating pi-Donor/Acceptor Stacks with Efficient Charge Transport Capacity
导电二维金属有机框架和共价有机框架,具有内置交替 pi 供体/受体堆栈,具有高效的电荷传输能力
- 批准号:
2321365 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
pi-electron charge transport mechanism of organic semiconductor materials with spatial correlation based on structural order
基于结构有序的空间相关性有机半导体材料π电子电荷输运机制
- 批准号:
23K03922 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)