FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology

FRG:协作研究:平均曲率流作为低维拓扑的工具

基本信息

  • 批准号:
    0854969
  • 负责人:
  • 金额:
    $ 43.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This proposal will address several fundamental open questions about mean curvature flow (MCF) of hypersurfaces of low dimensional manifolds and will introduce the MCF as a tool to address central questions in 3-manifold topology. In particular, the PI's will study regularity problems for the mean curvature flow, investigate the geometry and topology of ultra large volume 3-manifolds and use these results to attack the virtual Haken conjecture. Mean curvature flow as well as other curvature flows have been developed for their intrinsic beauty as well as their own intrinsic interest and their potential applications to other scientific fields, like mathematical finance and material science to model, for instance, option pricing, motion of grains in annealing metals, and crystal growths. Under the mean curvature flow, surfaces move in the direction where the surface area decreases the most, thus minimal surfaces remain static under the MCF. While key foundational results have been obtained, several of the most basic questions remain unanswered.
这个建议将解决几个基本的开放问题平均曲率流(MCF)的超曲面的低维流形,并将介绍MCF作为一种工具,以解决中心问题,在3-流形拓扑。 特别是,PI将研究平均曲率流的正则性问题,研究超大体积3-流形的几何和拓扑,并使用这些结果来攻击虚拟哈肯猜想。 平均曲率流以及其他曲率流已经发展为它们的内在美以及它们自己的内在利益和它们在其他科学领域的潜在应用,如数学金融和材料科学建模,例如,期权定价,退火金属中的晶粒运动和晶体生长。 在平均曲率流下,曲面沿表面积减小最多的方向移动,因此极小曲面在MCF下保持静止。虽然已经取得了关键的基础性成果,但一些最基本的问题仍然没有答案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Gabai其他文献

Exceptional hyperbolic 3-manifolds
特殊的双曲 3 流形
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gabai;M. Trnkova
  • 通讯作者:
    M. Trnkova
Foliations and the topology of 3-manifolds
Almost filling laminations and the connectivity of ending lamination space
  • DOI:
    10.2140/gt.2009.13.1017
  • 发表时间:
    2008-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gabai
  • 通讯作者:
    David Gabai
THE SMALE CONJECTURE FOR HYPERBOLIC 3-MANIFOLDS
双曲3流形的SMALE猜想
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gabai
  • 通讯作者:
    David Gabai
Pseudo-isotopies of simply connected 4-manifolds
简单连接的 4 流形的赝同位素
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gabai;David T. Gay;Daniel Hartman;Vyacheslav Krushkal;Mark Powell
  • 通讯作者:
    Mark Powell

David Gabai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Gabai', 18)}}的其他基金

Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
  • 批准号:
    2003892
  • 财政年份:
    2020
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
  • 批准号:
    1607374
  • 财政年份:
    2016
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
Crossroads in Topology
拓扑学的十字路口
  • 批准号:
    1237423
  • 财政年份:
    2012
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Standard Grant
Problems in Low Dimensional Geometry and Topology
低维几何和拓扑问题
  • 批准号:
    1006553
  • 财政年份:
    2010
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
  • 批准号:
    0854767
  • 财政年份:
    2009
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Standard Grant
Geometry and the Imagination
几何与想象力
  • 批准号:
    0703633
  • 财政年份:
    2007
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Understanding Low Volume Hyperbolic 3-Manifolds
FRG:协作研究:了解小体积双曲 3 流形
  • 批准号:
    0554374
  • 财政年份:
    2006
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Standard Grant
Wu-Chung Hsiang Topology Conference
向吴忠拓扑会议
  • 批准号:
    0603285
  • 财政年份:
    2006
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Standard Grant
Low Dimensional Topology and Hyperbolic Geometry
低维拓扑和双曲几何
  • 批准号:
    0504110
  • 财政年份:
    2005
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 43.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了