Crossroads in Topology
拓扑学的十字路口
基本信息
- 批准号:1237423
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"Panorama of Topology" is a conference which will be held May 8-11, 2012 at Princeton University. This conference is aimed at a wide audience of topologists, presenting many of the current great developments in this broad subject. Several themes will hold the conference together: Recent breakthroughs in hyperbolic geometry, three-manifold topology and geometric group theory leading to proofs of the virtual Haken and Ehrenpreis conjectures; major developments in Floer homology and categorification; and recent breakthroughs in homotopy theory, including the Kervaire invariant one conjecture. Conference speakers include A. Adem, I. Agol, A. Bahri, W. Browder, F. Cohen, J. Kahn, P. B. Kronheimer, R. Lipshitz, D. McDuff, J. Morgan, J. Rasmussen, D. Ravenel, N. Reshetikhin, W. Thurston, V. Voevodsky, K. Vogtmann, and D. Wise.In the past few decades, the subject of topology has experienced fundamental and transformative developments. Some of these developments come from its interactions with other fields of mathematics, including ideas from algebraic geometry, ergodic theory, geometric group theory, constructions inspired by mathematical physics, and links with representation theory. The aim of this conference is to bring together a broad spectrum of topologists to help foster communication between the various specializations, and to inspire a new generation of young researchers in this exciting and quickly-developing branch of mathematics. Architects of these developments will give research talks on their areas of expertise. The schedule will consist of roughly five hour-long talks per day, and some time for the researchers to interact with one another. The budget will help support the speakers, and it will provide partial support to graduate students and other young researchers to come participate in this event. Registration for the conference is available at the conference website, https://cgi.math.princeton.edu/conference/browder2012/registration.html
“拓扑全景”是一个会议,将于2012年5月8日至11日在普林斯顿大学举行。 这次会议是针对广大观众的拓扑学家,提出了许多目前的重大发展,在这个广泛的主题。 几个主题将举行会议在一起:最近的突破,在双曲几何,三流形拓扑和几何群论导致虚拟哈肯和Escherapreis的证明;重大发展在弗洛尔同源性和分类;和同伦理论,包括最近的突破Kervaire不变一猜想。会议发言人包括A。阿德姆岛Agol,A. Bahri,W. Browder,F. Cohen,J. Kahn,P. B.克朗海默河 Lipshitz,D.作者声明:McDuff,J. Morgan,J. Rasmussen,D. Ravenel,N.列舍季欣湾 Thurston,V. Voevodsky,K. Vogtmann和D.在过去的几十年里,拓扑学的主题经历了根本性和变革性的发展。其中一些发展来自于它与其他数学领域的相互作用,包括代数几何,遍历理论,几何群论,数学物理启发的结构以及与表示论的联系。 这次会议的目的是汇集广泛的拓扑学家,以帮助促进各种专业之间的沟通,并激励新一代的年轻研究人员在这个令人兴奋的和快速发展的数学分支。这些开发项目的建筑师将就他们的专业领域进行研究讲座。日程安排包括每天大约五个小时的演讲,以及研究人员相互互动的时间。 预算将帮助支持演讲者,并将为研究生和其他年轻研究人员提供部分支持,以参加这一活动。会议注册可在会议网站https://cgi.math.princeton.edu/conference/browder2012/registration.html上获得
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Gabai其他文献
Exceptional hyperbolic 3-manifolds
特殊的双曲 3 流形
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
David Gabai;M. Trnkova - 通讯作者:
M. Trnkova
Foliations and the topology of 3-manifolds
- DOI:
10.4310/jdg/1214437784 - 发表时间:
1987-11 - 期刊:
- 影响因子:2.5
- 作者:
David Gabai - 通讯作者:
David Gabai
Almost filling laminations and the connectivity of ending lamination space
- DOI:
10.2140/gt.2009.13.1017 - 发表时间:
2008-08 - 期刊:
- 影响因子:0
- 作者:
David Gabai - 通讯作者:
David Gabai
THE SMALE CONJECTURE FOR HYPERBOLIC 3-MANIFOLDS
双曲3流形的SMALE猜想
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
David Gabai - 通讯作者:
David Gabai
Pseudo-isotopies of simply connected 4-manifolds
简单连接的 4 流形的赝同位素
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
David Gabai;David T. Gay;Daniel Hartman;Vyacheslav Krushkal;Mark Powell - 通讯作者:
Mark Powell
David Gabai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Gabai', 18)}}的其他基金
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
- 批准号:
2304841 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Problems in Low Dimensional Geometry and Topology
低维几何和拓扑问题
- 批准号:
1006553 - 财政年份:2010
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
- 批准号:
0854969 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
- 批准号:
0854767 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Understanding Low Volume Hyperbolic 3-Manifolds
FRG:协作研究:了解小体积双曲 3 流形
- 批准号:
0554374 - 财政年份:2006
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Low Dimensional Topology and Hyperbolic Geometry
低维拓扑和双曲几何
- 批准号:
0504110 - 财政年份:2005
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
- 批准号:
DP240101084 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Discovery Projects