Low Dimensional Topology and Hyperbolic Geometry

低维拓扑和双曲几何

基本信息

  • 批准号:
    0504110
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator plans to investigate, in collaboration with others, several central issues in hyperbolic geometry and low dimensional topology. He will study the structure of low volume complete orientable hyperbolic 3-manifolds. He also plans to develop topological obstructions to geodesizing, via isotopy, simple curves in complete hyperbolic 3-manifolds and to investigate whether or not geometrically simply connected Schoenflies 4-balls are diffeomorphic to the standard 4-ball.Three-manifold topology is the study of objects which appear locally like the standard three dimensional space in which we live and two-manifold topology is the study of surfaces. The topology of two-dimensional manifolds, like the sphere and torus, was completely understood over 100 years ago. The geometry of two-dimensional manifolds is also very well understood. Despite the tremendous progress of the last 30 years some of the most basic issues of three-dimensional geometry and topology still must be understood. While we have experimental evidence predicting the low volume hyperbolic three-manifolds, we still do not even know the lowest volume closed ones. Given a hyperbolic three-manifold, say as a three-ball with face identifications, there is strikingly little understanding of how to pick out the shortest length paths. The last project is about understanding one of the most basic types of four-dimensional spaces.
首席研究员计划与其他人合作,研究双曲几何和低维拓扑中的几个核心问题。他将研究小体积完全可定向双曲3-流形的结构。他还计划通过同位素,在完全双曲3流形中的简单曲线中开发测地线化的拓扑障碍,并研究几何上单连通的schoen蝇4球是否与标准4球微分同构。三流形拓扑研究的是局部出现的物体,就像我们生活的标准三维空间一样,二流形拓扑研究的是表面。二维流形的拓扑结构,如球面和环面,在100多年前就被完全理解了。二维流形的几何也很容易理解。尽管在过去的30年里取得了巨大的进步,三维几何和拓扑的一些最基本的问题仍然必须理解。虽然我们有实验证据预测低体积双曲三流形,但我们仍然不知道最小体积的闭合流形。给定一个双曲三流形,比如一个带有人脸识别的三球,人们对如何挑选出最短路径的理解少得惊人。最后一个项目是关于理解四维空间的最基本类型之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Gabai其他文献

Exceptional hyperbolic 3-manifolds
特殊的双曲 3 流形
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gabai;M. Trnkova
  • 通讯作者:
    M. Trnkova
Foliations and the topology of 3-manifolds
Almost filling laminations and the connectivity of ending lamination space
  • DOI:
    10.2140/gt.2009.13.1017
  • 发表时间:
    2008-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gabai
  • 通讯作者:
    David Gabai
THE SMALE CONJECTURE FOR HYPERBOLIC 3-MANIFOLDS
双曲3流形的SMALE猜想
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gabai
  • 通讯作者:
    David Gabai
Pseudo-isotopies of simply connected 4-manifolds
简单连接的 4 流形的赝同位素
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gabai;David T. Gay;Daniel Hartman;Vyacheslav Krushkal;Mark Powell
  • 通讯作者:
    Mark Powell

David Gabai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Gabai', 18)}}的其他基金

Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
  • 批准号:
    2003892
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
  • 批准号:
    1607374
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Crossroads in Topology
拓扑学的十字路口
  • 批准号:
    1237423
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Problems in Low Dimensional Geometry and Topology
低维几何和拓扑问题
  • 批准号:
    1006553
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
  • 批准号:
    0854969
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
  • 批准号:
    0854767
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry and the Imagination
几何与想象力
  • 批准号:
    0703633
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Understanding Low Volume Hyperbolic 3-Manifolds
FRG:协作研究:了解小体积双曲 3 流形
  • 批准号:
    0554374
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Wu-Chung Hsiang Topology Conference
向吴忠拓扑会议
  • 批准号:
    0603285
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Problems in low-dimensional topology
低维拓扑问题
  • 批准号:
    2304856
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Re-examination of classical problems in low-dimensional topology from higher invariants
从更高的不变量重新审视低维拓扑中的经典问题
  • 批准号:
    23K03110
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Low-dimensional topology and links of singularities
低维拓扑和奇点链接
  • 批准号:
    2304080
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
  • 批准号:
    2304877
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Low dimensional topology via Floer theory
职业:通过弗洛尔理论的低维拓扑
  • 批准号:
    2238103
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
  • 批准号:
    2237131
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
New techniques and invariants in low-dimensional topology
低维拓扑中的新技术和不变量
  • 批准号:
    FT230100092
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了