II-NEW: Enhanced Parallelization for High Performance Computing

II-新:高性能计算的增强并行化

基本信息

  • 批准号:
    0855247
  • 负责人:
  • 金额:
    $ 22.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).With the growth in the size of scientific applications the level of parallelism provided by existing techniques leads to suboptimal performance and, therefore, an integrated approach to parallelism is necessary. This research involves the acquisition of a cluster for high performance computing. Using this infrastructure the investigators will improve parallelism at many levels ranging from compiler to I/O, in order to increase the execution performance of scientific applications. The infrastructure offers a valuable tool to validate the results on a state-of-the-art system using large scale scientific applications.This research aims to elevate the productivity and efficiency of high-performance scientific computing through innovative language, compiler, empirical tuning, parallel I/O, and power management technologies. The investigators develop new methods for flow-sensitive static and dynamic program analysis to enhance loop parallelization. The investigators implement new speculative parallelization techniques to expose higher levels of thread parallelism for chip-multiprocessors (CMPs). Furthermore, the investigators plan to build an integrated framework for parallel I/O by studing various aspects of declustering, including novel declustering schemes, replicated declustering, heterogeneous declustering, adaptive declustering and declustering using multiple databases. Finally, the investigators plan to develop efficient energy management schemes for parallel high-performance clusters, study various fault tolerance approaches by exploring the inherent space redundancy in CMPs, and address the potential negative effects of energy management on system reliability. The computing platform enables the investigators to validate the impact of their research on application performance and scalability on a large scale parallel system.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。随着科学应用程序规模的增长,现有技术提供的并行性水平导致了次优性能,因此,需要一种集成的并行性方法。本研究涉及到高性能计算集群的获取。使用这种基础设施,研究人员将提高从编译器到I/O的许多级别的并行性,以提高科学应用程序的执行性能。该基础设施提供了一个有价值的工具,可以在使用大规模科学应用的最先进系统上验证结果。本研究旨在通过创新的语言、编译器、经验调优、并行I/O和电源管理技术来提高高性能科学计算的生产力和效率。研究人员开发了流敏感静态和动态程序分析的新方法,以增强循环并行化。研究人员实现了新的推测并行化技术,为芯片多处理器(cmp)提供更高级别的线程并行性。此外,研究人员计划通过研究分布式集群的各个方面,包括新型分布式集群、复制分布式集群、异构分布式集群、自适应分布式集群和使用多个数据库的分布式集群,构建一个集成的并行I/O框架。最后,研究人员计划为并行高性能集群开发高效的能量管理方案,通过探索cmp固有的空间冗余来研究各种容错方法,并解决能量管理对系统可靠性的潜在负面影响。计算平台使研究人员能够验证他们的研究对大规模并行系统的应用程序性能和可扩展性的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dakai Zhu其他文献

Energy Efficient Redundant Configurations for Reliable Servers in Distributed Systems
分布式系统中可靠服务器的节能冗余配置
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dakai Zhu;R. Melhem
  • 通讯作者:
    R. Melhem
Work-in-Progress: Victim-Aware Scheduling for Robust Operations in Safety-Critical Systems
正在进行的工作:在安全关键系统中实现稳健操作的受害者感知调度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dakai Zhu;S. Drager;Matthew Anderson;Hakan Aydin
  • 通讯作者:
    Hakan Aydin
Multicore Mixed-Criticality Systems: Partitioned Scheduling and Utilization Bound
多核混合关键系统:分区调度和利用率限制
Memory-aware Efficient Deep Learning Mechanism for IoT Devices
适用于物联网设备的内存感知高效深度学习机制
uPredict: A User-Level Profiler-Based Predictive Framework in Multi-Tenant Clouds
uPredict:多租户云中基于用户级分析器的预测框架

Dakai Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dakai Zhu', 18)}}的其他基金

Conference: NSF Student Travel Grant for CPS-IoT Week 2023
会议:2023 年 CPS-IoT 周 NSF 学生旅行补助金
  • 批准号:
    2317679
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Dependable Real-Time Computing on Heterogeneous Chip Multiprocessor Systems
CSR:小型:协作研究:异构芯片多处理器系统上的可靠实时计算
  • 批准号:
    1422709
  • 财政年份:
    2014
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Continuing Grant
CSR: Small: Collaborative Research: Generalized Reliability-Aware Power Management for Real-Time Embedded Systems
CSR:小型:协作研究:实时嵌入式系统的通用可靠性感知电源管理
  • 批准号:
    1016974
  • 财政年份:
    2010
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Continuing Grant
CAREER: An Integrated Scheduling Framework for Multicore Based Real-Time Embedded Systems
职业:基于多核的实时嵌入式系统的集成调度框架
  • 批准号:
    0953005
  • 财政年份:
    2010
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR-EHS: Towards an Integrated Framework for Low Power Reliable Real-Time Embedded Systems
合作研究:CSR-EHS:迈向低功耗可靠实时嵌入式系统的集成框架
  • 批准号:
    0720651
  • 财政年份:
    2007
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Continuing Grant

相似海外基金

Magnetic Resonances in Nonlinear Dielectric Nanostructures: New Light-Matter Interactions and Machine Learning Enhanced Design
非线性介电纳米结构中的磁共振:新的光-物质相互作用和机器学习增强设计
  • 批准号:
    2240562
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Standard Grant
New methods for enhanced brain activity mapping through multi-modal data-fusion and deep learning
通过多模态数据融合和深度学习增强大脑活动映射的新方法
  • 批准号:
    2830309
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Studentship
Achieving tip-enhanced sum-frequency generation spectroscopy and exploring the new frontiers of surface science
实现尖端增强和频发生光谱学,探索表面科学新前沿
  • 批准号:
    23H01855
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Let your metabolites shine: new NMR experiments and hardware for enhanced studies of metabolites
让您的代谢物大放异彩:新的 NMR 实验和硬件可增强代谢物的研究
  • 批准号:
    2898065
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Studentship
Modeling Dynamics and Impacts of a new class of Kelvin-Helmholtz Instabilities that Drive Enhanced Turbulence and Mixing in the MLT
对驱动 MLT 中增强的湍流和混合的新型开尔文-亥姆霍兹不稳定性的动力学和影响进行建模
  • 批准号:
    2230482
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Standard Grant
Broadband and tunable enhanced chiral light-matter interactions at the visible with new ultrathin helical metamaterials
新型超薄螺旋超材料在可见光下实现宽带和可调谐增强手性光与物质相互作用
  • 批准号:
    2224456
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Standard Grant
New proximal algorithms for computational imaging: From optimisation theory to enhanced deep learning
计算成像的新近端算法:从优化理论到增强型深度学习
  • 批准号:
    EP/X028860/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Research Grant
Elucidation of the mechanism of enhanced insect captures by multiple wavelengths and development of new traps based on this mechanism
阐明多波长增强昆虫捕获的机制并基于该机制开发新的诱捕器
  • 批准号:
    23K05250
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhanced Fertility test kit and digital platform certification for new market entry
增强的生育力测试套件和数字平台认证,以进入新市场
  • 批准号:
    10046002
  • 财政年份:
    2022
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Grant for R&D
A New Approach to the Production of Cultured Meat with Enhanced Texture
生产具有增强质感的培养肉的新方法
  • 批准号:
    2742212
  • 财政年份:
    2022
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了