Categorification of Quantum Groups

量子群的分类

基本信息

  • 批准号:
    0855713
  • 负责人:
  • 金额:
    $ 11.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Building off geometric constructions of Beilinson, Lusztig, and MacPherson, the PI in collaboration with Mikhail Khovanov categorified quantum sl(n), as well as the quantum deformation of the universal enveloping algebra of the ``lower-triangular'' subalgebra for an arbitrary Kac-Moody Lie algebra. While these categorifications are completely combinatorial, they utilize various diagrammatic calculi emphasizing a new interplay between topology and algebra. The proposal aims to further develop the theory of categorified quantum groups, study their Hopf structure (comultiplication and antipode), further develop their representation theory, categorify the entire quantum enveloping algebra for other Kac-Moody Lie algebras, and understand the relationship to geometric representation theory. Potential applications of categorified of quantum groups include the study of positivity properties for quantum enveloping algebras, a representation theoretic explanation of Khovanov homology and a categorification of the Witten-Reshetikhin-Turaev quantum 3-manifold invariants.Quantum groups are prevalent throughout mathematics and theoretical physics. These Hopf algebras provide the representation theoretic framework for understanding quantum link invariants such as the Jones polynomial, Kauffman and HOMFLY-PT polynomial, as well as the Witten-Reshetikhin-Turaev quantum 3-manifold invariants. They also relate to statistical mechanics, quantum field theory, and affine Lie algebras. Recent work suggests that the representation theory of quantum groups, and the quantum groups themselves, are shadows of a much richer algebraic structure known as categorified quantum groups. These structures were conjectured to exist by Crane and Frenkel and form the focal point of this proposal.
该奖项由2009年《美国复苏和再投资法案》(公法111-5)资助。该奖项建立在Beilinson、Lusztig和MacPherson的几何结构的基础上,PI与Mikhail Khovanov合作将量子sl(N)归类,以及任意Kac-Moody李代数的“下三角”子代数的普适包络代数的量子形变。虽然这些分类完全是组合的,但它们利用了各种图解演算,强调了拓扑学和代数之间的新的相互作用。该方案旨在进一步发展范畴量子群的理论,研究它们的Hopf结构(余积和对极),进一步发展它们的表示理论,对其他Kac-Moody李代数的整个量子包络代数进行分类,并了解它们与几何表示理论的关系。量子群范畴化的潜在应用包括研究量子包络代数的正性性质,Khovanov同调的表示理论解释以及Witten-Reshetikhin-Turaev量子3-流形不变量的范畴。量子群普遍存在于数学和理论物理中。这些Hopf代数为理解量子链不变量,如Jones多项式、Kauffman和HOMFLY-PT多项式,以及Witten-Reshetikhin-Turaev量子三维流形不变量提供了表示理论框架。它们还与统计力学、量子场论和仿射李代数有关。最近的工作表明,量子群的表示理论,以及量子群本身,都是一种更丰富的代数结构的影子,这种代数结构被称为范畴化量子群。这些结构被克雷恩和弗伦克尔推测存在,并构成了这一提议的焦点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Lauda其他文献

Aaron Lauda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Lauda', 18)}}的其他基金

New Topologically Inspired Directions in Higher Representation Theory
更高表示理论中受拓扑启发的新方向
  • 批准号:
    2200419
  • 财政年份:
    2022
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Continuing Grant
Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
  • 批准号:
    2205730
  • 财政年份:
    2022
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
Homotopical Methods in Higher Representation Theory
高级表示理论中的同伦方法
  • 批准号:
    1902092
  • 财政年份:
    2019
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
Topological Quantum Field Theory and Categorification
拓扑量子场论及其分类
  • 批准号:
    1806399
  • 财政年份:
    2018
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Categorifying Quantum Three-Manifold Invariants
FRG:合作研究:量子三流形不变量的分类
  • 批准号:
    1664240
  • 财政年份:
    2017
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
US-Mexico conference in representation theory and noncommutative algebra
美国-墨西哥表示论和非交换代数会议
  • 批准号:
    1744232
  • 财政年份:
    2017
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
US-Mexico conference in representation theory and noncommutative algebra
美国-墨西哥表示论和非交换代数会议
  • 批准号:
    1446398
  • 财政年份:
    2014
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
CAREER: Interactions between knot homology and rep
职业:结同源性和重复之间的相互作用
  • 批准号:
    1255334
  • 财政年份:
    2013
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
Study on the representations of affine quantum groups using quivers with potentials
用势颤振表示仿射量子群的研究
  • 批准号:
    23K12955
  • 财政年份:
    2023
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum groups and K-theory
量子群和 K 理论
  • 批准号:
    22KJ0618
  • 财政年份:
    2023
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Harmonic analysis of q-Laplace operators on quantum groups
量子群上q-拉普拉斯算子的调和分析
  • 批准号:
    23KJ1690
  • 财政年份:
    2023
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
  • 批准号:
    2302661
  • 财政年份:
    2023
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
  • 批准号:
    RGPIN-2017-06275
  • 财政年份:
    2022
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Discovery Grants Program - Individual
KK-theory, quantum groups, and quaternions
KK 理论、量子群和四元数
  • 批准号:
    RGPIN-2021-02746
  • 财政年份:
    2022
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Discovery Grants Program - Individual
C*-algebras of Groups and Quantum Groups: Rigidity and Structure Theory
群和量子群的 C* 代数:刚性和结构理论
  • 批准号:
    2155162
  • 财政年份:
    2022
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Standard Grant
Study of generalized quantum groups by using Weyl groupoids
利用Weyl群形研究广义量子群
  • 批准号:
    22K03225
  • 财政年份:
    2022
  • 资助金额:
    $ 11.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了