CAREER: Interactions between knot homology and rep
职业:结同源性和重复之间的相互作用
基本信息
- 批准号:1255334
- 负责人:
- 金额:$ 44.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal details a comprehensive program which uses diagrammatic methods in categorified representation theory to obtain new results in representation theory and low-dimensional topology. One research objective seeks to exploit an analogy between knot homology and categorified representation theory to produce new representation theoretic objects arising from odd Khovanov homology. Another research direction seeks to use the powerful tool of categorical skew Howe duality to solve open problems in link homology theory for the special linear Lie algebra. This work will have applications to Landau-Ginzburg models in theoretical physics via the Kapustin-Li formula. The same diagrammatics used to encode the structure of categorified quantum groups will be used to transform current research into unique educational opportunities including an undergraduate research program at USC and innovative curriculum development of an undergraduate course on 'Diagrammatic Algebra'. The PI will also tap into the existing infrastructure of USC's community involvement to recruit high school students for a mathematics based event using diagrammatic algebra as a tool for engaging high school students.An emerging mathematical philosophy known as "categorification" has significantly altered our perception of mathematics and the way we analyze our surroundings. Imagine if an architect studied a building by only examining its shadow. In much the same way, the perspective of categorification uncovers a hidden layer in mathematical objects allowing mathematicians to see the entire structure rather than its shadow. The PI's research uncovers these hidden structures in an area of mathematics known as representation theory which is closely connected to some of the most sophisticated models in theoretical physics. Following the philosophy that fundamental structures in mathematics should be simple and intuitive the PI utilizes a diagrammatic framework to encode a great deal of complexity into an intuitive diagrammatic language that greatly simplifies computations. The PI will incorporate this diagrammatic philosophy into transformative educational programs aimed at high school students, undergraduates, and graduate students making the tools of modern research accessible to a new generation of researchers. This award is co-funded by the Algebra and Number Theory program and the Topology and Geometric Analysis program.
这项建议详细说明了一个全面的程序,它使用范畴化表示理论中的图示方法来获得表示理论和低维拓扑的新结果。一个研究目标是利用纽结同调和范畴化表示理论之间的类比来产生由奇Khovanov同调产生的新的表示理论对象。另一个研究方向是利用范畴斜豪对偶这一强有力的工具来解决特殊线性李代数的链同调理论中的公开问题。这项工作将通过Kapustin-Li公式应用于理论物理中的Landau-Ginzburg模型。用于编码分类量子群结构的相同图解将被用于将当前的研究转化为独特的教育机会,包括在南加州大学的本科生研究计划,以及本科生关于“图解代数”的创新课程开发。PI还将利用南加州大学社区参与的现有基础设施,招募高中生参加一个以数学为基础的活动,使用图解代数作为吸引高中生的工具。一种新兴的数学哲学,即所谓的“归类”,显著改变了我们对数学的看法和我们分析周围环境的方式。想象一下,如果一位建筑师只通过检查阴影来研究一座建筑。同样,分类的观点揭示了数学对象中的一个隐藏层,使数学家能够看到整个结构,而不是它的影子。PI的研究揭示了这些被称为表示理论的数学领域的隐藏结构,该理论与理论物理中的一些最复杂的模型密切相关。遵循数学的基本结构应该是简单和直观的哲学,PI利用图解框架将大量的复杂性编码成直观的图解语言,大大简化了计算。PI将把这一图解哲学纳入针对高中生、本科生和研究生的变革性教育计划,使新一代研究人员能够获得现代研究的工具。该奖项由代数和数论项目以及拓扑学和几何分析项目共同资助。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The colored HOMFLYPT function is $q$ -holonomic
彩色 HOMFLYPT 函数为 $q$ -holonomic
- DOI:10.1215/00127094-2017-0030
- 发表时间:2018
- 期刊:
- 影响因子:2.5
- 作者:Garoufalidis, Stavros;Lauda, Aaron D.;Lê, Thang T.
- 通讯作者:Lê, Thang T.
W-ALGEBRAS FROM HEISENBERG CATEGORIES
海森堡范畴的 W 代数
- DOI:10.1017/s1474748016000189
- 发表时间:2016
- 期刊:
- 影响因子:0.9
- 作者:Cautis, Sabin;Lauda, Aaron D.;Licata, Anthony M.;Sussan, Joshua
- 通讯作者:Sussan, Joshua
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Lauda其他文献
Aaron Lauda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Lauda', 18)}}的其他基金
New Topologically Inspired Directions in Higher Representation Theory
更高表示理论中受拓扑启发的新方向
- 批准号:
2200419 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
- 批准号:
2205730 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
Homotopical Methods in Higher Representation Theory
高级表示理论中的同伦方法
- 批准号:
1902092 - 财政年份:2019
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
Topological Quantum Field Theory and Categorification
拓扑量子场论及其分类
- 批准号:
1806399 - 财政年份:2018
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Categorifying Quantum Three-Manifold Invariants
FRG:合作研究:量子三流形不变量的分类
- 批准号:
1664240 - 财政年份:2017
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
US-Mexico conference in representation theory and noncommutative algebra
美国-墨西哥表示论和非交换代数会议
- 批准号:
1744232 - 财政年份:2017
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
US-Mexico conference in representation theory and noncommutative algebra
美国-墨西哥表示论和非交换代数会议
- 批准号:
1446398 - 财政年份:2014
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Understanding the Interactions Between Surfactants and Metallic Nanoparticles Using Molecular Simulation
职业:利用分子模拟了解表面活性剂和金属纳米颗粒之间的相互作用
- 批准号:
2046095 - 财政年份:2021
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
CAREER: Non-additive control of gene expression by long-range interactions between multiple regulatory elements
职业:通过多个调控元件之间的长程相互作用对基因表达进行非加性控制
- 批准号:
1942471 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
CAREER: Controlling unconventional interactions between 2D excitons and novel quantum excitations
职业:控制二维激子和新型量子激发之间的非常规相互作用
- 批准号:
1945660 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
CAREER: The role of maternal behavior in driving bidirectional interactions between infectious diseases and offspring immune phenotype.
职业:母亲行为在推动传染病和后代免疫表型之间双向相互作用中的作用。
- 批准号:
1941861 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
CAREER: Interactions between 2D particles at fluid-fluid interfaces
职业:流体-流体界面处二维粒子之间的相互作用
- 批准号:
1944725 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
CAREER: Investigation of Dynamic Interactions Between Wing-Body and Aerodynamics in Bio-Inspired Flight
职业:研究仿生飞行中翼身与空气动力学之间的动态相互作用
- 批准号:
1846308 - 财政年份:2019
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
CAREER: Transforming the synergistic interactions between pyrogenic carbonaceous matter and sulfur species into solutions for contaminant detoxification
职业:将热解碳质和硫物质之间的协同相互作用转化为污染物解毒的解决方案
- 批准号:
1752220 - 财政年份:2018
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
CAREER: Interactions between Stress and Attention Circuits: Investigating Corticotropin Releasing Factor Modulation of the Basal Forebrain
职业:压力和注意力回路之间的相互作用:研究基底前脑促肾上腺皮质激素释放因子的调节
- 批准号:
1552416 - 财政年份:2016
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
CAREER: Interactions between Floer Theory, Khovanov Homology, and Low-Dimensional Topology
职业:Floer 理论、Khovanov 同调和低维拓扑之间的相互作用
- 批准号:
1454865 - 财政年份:2015
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
CAREER: Towards an accurate and illuminating theory of weak interactions between open-shell systems
职业:建立一个准确且富有启发性的开壳系统弱相互作用理论
- 批准号:
1351978 - 财政年份:2014
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant