FRG: Collaborative Research: Categorifying Quantum Three-Manifold Invariants
FRG:合作研究:量子三流形不变量的分类
基本信息
- 批准号:1664240
- 负责人:
- 金额:$ 14.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum topology is a branch of mathematics that provides a testing ground for the structures needed in a quantum theory of gravity. This field has brought about unprecedented interaction between mathematics and theoretical physics. It has been extremely successful and well studied in 3-dimensions. However, since we live in 4-dimensions (including time), a full theory of quantum gravity requires an extension of these tools to 4-dimensions. An emerging mathematical philosophy known as "categorification" provides an avenue to uncover a hidden layer in mathematical structures, revealing a richer and more robust theory capable of describing more complex phenomenon. This project will use the perspective of categorification to enhance one of the most successful theories in 3-dimensions to a full 4-dimensional theory.This collaboration will harness the interplay between low-dimensional geometry, representation theory, and higher-dimensional gauge theory. Through this coordinated effort the PIs will make substantial progress on the problem of categorifying 3-manifold invariants. The PIs will capitalize on recent breakthroughs in theoretical physics and higher representation theory that have created new possibilities for significant progress on this problem. Among the techniques to be employed include: fivebrane compactifications to provide a universal description of various old and new homological invariants of 3-manifolds, the use of infinity categories for defining tensor products of higher representations of quantum groups, and the theory of Hopfological algebra for categorifications at roots of unity, as well as recent work on odd link homology theory and categorifications of Habiro's universal invariant.
量子拓扑学是数学的一个分支,它为引力的量子理论所需的结构提供了一个试验场。这一领域带来了数学和理论物理之间前所未有的互动。它非常成功,在三维空间中得到了很好的研究。然而,由于我们生活在四维(包括时间)中,一个完整的量子引力理论需要将这些工具扩展到四维。一种被称为“分类”的新兴数学哲学提供了一种揭示数学结构中隐藏层的途径,揭示了能够描述更复杂现象的更丰富,更强大的理论。 这个项目将使用范畴化的观点来将三维中最成功的理论之一提升为一个完整的四维理论。这个合作将利用低维几何,表示理论和高维规范理论之间的相互作用。通过这种协调的努力,PI将取得实质性进展的问题上的分类3流形不变量。PI将利用理论物理学和更高表示理论的最新突破,这些突破为解决这个问题取得重大进展创造了新的可能性。 将采用的技术包括:五膜紧化,以提供一个通用的描述各种旧的和新的同调不变量的3流形,使用无穷大类别定义张量积的更高表示的量子群,和理论的Hopfological代数的消隐在根的单位,以及奇环同调理论和哈比罗普适不变量的简化的最新工作。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DG structures on odd categorified quantum $sl(2)$
奇数分类量子 $sl(2)$ 上的 DG 结构
- DOI:10.4171/qt/135
- 发表时间:2020
- 期刊:
- 影响因子:1.1
- 作者:Egilmez, Ilknur;Lauda, Aaron
- 通讯作者:Lauda, Aaron
Parameters in Categorified Quantum Groups
分类量子群中的参数
- DOI:10.1007/s10468-019-09890-8
- 发表时间:2019
- 期刊:
- 影响因子:0.6
- 作者:Lauda, Aaron D.
- 通讯作者:Lauda, Aaron D.
Curved Rickard complexes and link homologies
弯曲的里卡德复合物和链接同源性
- DOI:10.1515/crelle-2019-0044
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cautis, Sabin;Lauda, Aaron D.;Sussan, Joshua
- 通讯作者:Sussan, Joshua
A DG-extension of symmetric functions arising from higher representation theory
由更高表示理论产生的对称函数的 DG 扩展
- DOI:10.4171/jca/2-2-3
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Appel, Andrea;Egilmez, Ilknur;Hogancamp, Matthew;Lauda, Aaron
- 通讯作者:Lauda, Aaron
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Lauda其他文献
Aaron Lauda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Lauda', 18)}}的其他基金
New Topologically Inspired Directions in Higher Representation Theory
更高表示理论中受拓扑启发的新方向
- 批准号:
2200419 - 财政年份:2022
- 资助金额:
$ 14.74万 - 项目类别:
Continuing Grant
Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
- 批准号:
2205730 - 财政年份:2022
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
Homotopical Methods in Higher Representation Theory
高级表示理论中的同伦方法
- 批准号:
1902092 - 财政年份:2019
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
Topological Quantum Field Theory and Categorification
拓扑量子场论及其分类
- 批准号:
1806399 - 财政年份:2018
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
US-Mexico conference in representation theory and noncommutative algebra
美国-墨西哥表示论和非交换代数会议
- 批准号:
1744232 - 财政年份:2017
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
US-Mexico conference in representation theory and noncommutative algebra
美国-墨西哥表示论和非交换代数会议
- 批准号:
1446398 - 财政年份:2014
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
CAREER: Interactions between knot homology and rep
职业:结同源性和重复之间的相互作用
- 批准号:
1255334 - 财政年份:2013
- 资助金额:
$ 14.74万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Continuing Grant