Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory
群论和半群论中的几何和组合方法会议
基本信息
- 批准号:0855953
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support an international conference on geometric and combinatorial methods in group theory and semigroup theory. The conference will be held on the campus of the University of Nebraska-Lincoln during the period May 17 - May 21, 2009. Groups are a useful mathematical tool which originated in the study of symmetry, including research on symmetries of crystal lattices in chemistry. Many of the applications of work in semigroup theory also lie in the study of local (instead of global) symmetries of objects, as well as their use as an algebraic tool in computer science for studying the operation of finite state machines. The aim of this conference is to stimulate cooperative research among group theorists and semigroup theorists who are using related techniques. Research in both group theory and semigroup theory has burgeoned in recent years, with many new tools and ideas connecting these areas to topology, geometry, dynamical systems, symbolic computation, and combinatorics. The new methods developed in each of group theory and semigroup theory have great potential for further applications in both areas. The conference will highlight recent developments in these fields, with a focus on asymptotic and algorithmic properties. In addition to the dissemination of recent ideas on topics in group theory and semigroup theory, the conference will provide a setting for the participants to collaborate and establish connections with each other, bridging group theory and semigroup theory. The conference will also help recent Ph.D.'s and graduate students to interact with leading researchers in the area and gain a broader knowledge of their research field.
这笔赠款将支持国际会议的几何和组合方法在群论和半群理论。会议将于2009年5月17日至5月21日在内布拉斯加大学林肯分校举行。 群是一种有用的数学工具,它起源于对称性的研究,包括化学中晶格对称性的研究。 半群理论的许多应用也在于研究对象的局部(而不是全局)对称性,以及它们在计算机科学中作为研究有限状态机操作的代数工具的使用。 本次会议的目的是促进合作研究群理论家和半群理论家谁是使用相关技术。 近年来,群论和半群理论的研究蓬勃发展,许多新的工具和思想将这些领域与拓扑学,几何学,动力系统,符号计算和组合学联系起来。 在群论和半群理论中发展的新方法在这两个领域都有很大的应用潜力。 会议将突出这些领域的最新发展,重点是渐近和算法特性。 除了传播关于群论和半群理论主题的最新思想外,会议还将为与会者提供一个合作和相互建立联系的环境,桥接群论和半群理论。 会议还将帮助最近的博士。的和研究生与该地区的领先研究人员进行互动,并获得更广泛的知识,他们的研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Hermiller其他文献
Algorithms and topology of Cayley graphs for groups
- DOI:
10.1016/j.jalgebra.2014.06.001 - 发表时间:
2014-10-01 - 期刊:
- 影响因子:
- 作者:
Mark Brittenham;Susan Hermiller;Derek Holt - 通讯作者:
Derek Holt
Tame combing and almost convexity conditions
- DOI:
10.1007/s00209-010-0759-5 - 发表时间:
2010-08-20 - 期刊:
- 影响因子:1.000
- 作者:
Sean Cleary;Susan Hermiller;Melanie Stein;Jennifer Taback - 通讯作者:
Jennifer Taback
Susan Hermiller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Hermiller', 18)}}的其他基金
Topology and geometry of Cayley graphs for groups
群的凯莱图的拓扑和几何
- 批准号:
1313559 - 财政年份:2013
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Geometric Group Theory and Rewriting Systems
几何群论和重写系统
- 批准号:
0071037 - 财政年份:2000
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Rewriting Systems and Geometric Group Theory
数学科学:重写系统和几何群论
- 批准号:
9623088 - 财政年份:1996
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
International Postdoctoral Fellows Program: Rewriting Systems for Groups
国际博士后项目:群体重写系统
- 批准号:
9223826 - 财政年份:1993
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
RUI: Optimization on Geometric Spanner Networks from a Combinatorial Perspective
RUI:从组合角度优化几何扳手网络
- 批准号:
2154347 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Geometric and Combinatorial Methods for Distribution-Free Inference and Dependent Network Data
职业:无分布推理和相关网络数据的几何和组合方法
- 批准号:
2046393 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Combinatorial, geometric and probabilistic properties of groups
群的组合、几何和概率属性
- 批准号:
2611134 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Studentship
Geometric structures and combinatorial structures of 3-dimensional manifolds
3维流形的几何结构和组合结构
- 批准号:
20K03614 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric and Combinatorial Configurations in Model Theory
模型理论中的几何和组合配置
- 批准号:
431667816 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Research Grants
Computational, Combinatorial, and Geometric Aspects of Linear Optimization
线性优化的计算、组合和几何方面
- 批准号:
RGPIN-2015-06163 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
- 批准号:
1922091 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant














{{item.name}}会员




