Geometric structures and combinatorial structures of 3-dimensional manifolds

3维流形的几何结构和组合结构

基本信息

项目摘要

(1)Agolが2001年にアナウンスした次の定理に完全な証明を与えた。「定理:双曲2橋絡み目群のメリディアン対が上方メリディアン対、下方メリディアン対どちらにも同値でないならば、それが生成する部分群は幾何学的有限な自由群である。」証明の鍵は、I. Aitchison, D. Thurston、横田佳之により構成されていた交代絡み目補空間の非正曲率立方体分割である。この立方体分割は、交代絡み目の2つのチェッカーボード曲面をハイパー曲面として含み、このことを用いると、双曲的交代絡み目のチェカーボード曲面は擬フックス群を定めることが示される。そのため、絡み目補空間の普遍被覆である3次元双曲空間へのチェカーボード曲面の持ち上げは3次元双曲空間の無限遠境界であるリーマン球面上の円周をその無限遠境界として定める。チェカーボード曲面が交代絡み目補空間の非正曲率立方体分割のハイパー曲面であることを用いて、このようにして登場する円周達の交差のパターンの情報が得られ、それを用いて与えられたメリディアン対の無限遠リーマン球面への作用を記述し、定理の条件を満たすメリディアン対が幾何学的有限な自由群であることを示すというのがAgolのアイデアである。このアイデアを実現する厳密な議論を与えたのが、今回の成果である。(2)上述の結果を、完備双曲的3次元多様体の基本群Gの2つの放物的変換で生成される部分群Hに対するものに一般化し、次のいずれかが成立することを証明した。(a) Hは自由群(Gが幾何学的有限である場合は、H も幾何学的有限)。(b) G=Hは2橋絡み目絡み目群。(c) Hは2成分2橋絡み目群、Gは射影空間内の有理絡み目の補空間の基本群でHはGの指数2の部分群。以上は坂井駿介との共同研究であり、研究成果を纏めた論文を執筆し、arXivに投稿後意見を待って、改訂版を専門誌に投稿した。
(1) Agolが in 2001, the にアナウ ス ス た た theorem に completely な proved that を and えた. "Theorem: the hyperbolic complex 2 bridge み item group の メ リ デ ィ ア ン が seaborne above メ リ デ ィ ア ン, below the seaborne メ リ デ ィ ア ン ど seaborne ち ら に も with numerical で な い な ら ば, そ れ が generated す る part group は geometry な limited freedom group で あ る." It is proved that the <s:1> key によ, I. Aitchison, D. Thurston, and Yoshiyuki yokota によ and their respective equations form the されて た た た of the apomatous network み and the <s:1> non-positive curvature cube partition である of the space. こ の cube は, metasomatism collaterals み mesh の 2 つ の チ ェ ッ カ ー ボ ー ド surface を ハ イ パ ー surface と し て み, こ の こ と を with い る と, hyperbolic metasomatism collaterals み mesh の チ ェ カ ー ボ ー ド surface は フ ッ ク ス group set を め る こ と が shown さ れ る. そ の た め, winding み mesh complementary space の common coating で あ る 3 dimensional hyperbolic space へ の チ ェ カ ー ボ ー の ド surface on a ち げ は の 3 dimensional hyperbolic space infinity realm で あ る リ ー マ ン sphere の has drifted back towards &yen; weeks を そ の infinity realm と し て set め る. チ ェ カ ー ボ ー ド surface が metasomatism collaterals み mesh complementary space の is a cube curvature segmentation の ハ イ パ ー surface で あ る こ と を with い て, こ の よ う に し て appearance す る has drifted back towards &yen; zhou da の job の パ タ ー ン の intelligence が ら れ, そ れ を with い て and え ら れ た メ リ デ ィ ア ン の seaborne infinity リ ー マ ン spherical へ の account を し, theorem を の conditions against た す メ リ デ ィ ア ン が geometry な limited freedom group of seaborne で あ る こ と を shown す と い う の が Agol の ア イ デ ア で あ る. <s:1> ア デアを デアを current する厳 secret な discussion を and えた が が this time である results である. (2) the results の を, three dimensional more complete hyperbolic others body の の 2 basic group G つ の put the variations of content in で generated さ れ る part of the group of H に す seaborne る も の に generalization し, の い ず れ か が established す る こ と を prove し た. (a) H-libertarian group (in the finite である case of Gが geometry and in the finite case of H <s:1> geometry). (b) G=H み 2 bridge network み order network み order group. (c) H み 2 component 2-bridge network み order group, G <s:1> rational network み order <s:1> complement space <s:1> basic group でH <e:1> G <s:1> exponent 2 <s:1> partial group in the projective space. Well above は sakaguchi jun interface と の joint research で あ り, research を め た paper を penned し, arXiv に contribute opinions after を stay っ て, a revised edition を 専 door will contribute に し た.

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
"Monodromy groups" of Heegaard surfaces of 3-manifolds - Research announcement -
3 流形 Heegaard 曲面的“Monodromy 群” - 研究公告 -
Non-free Kleinian groups generated by two parabolic transformations
由两个抛物线变换生成的非自由克莱因群
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ito Noboru;Masatoshi Kokubu;作間誠;伊藤昇;作間誠;國分雅敏;伊藤昇;Makoto Sakuma;伊藤昇;Makoto Sakuma;山田海音;Makoto Sakuma
  • 通讯作者:
    Makoto Sakuma
Checkerboard surface subgroups of hyperbolic alternating link groups from the view point of non-positively curved cubings
从非正曲立方角度看双曲交替联杆群的棋盘面子群
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kiyonori Gomi;Makoto Sakuma
  • 通讯作者:
    Makoto Sakuma
“Monodromy groups” of Heegaard surfaces of 3-manifolds
3 流形 Heegaard 曲面的“单峰群”
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Nozaki;M. Sato;and M. Suzuki;Sabau V. Sorin;古宇田 悠哉
  • 通讯作者:
    古宇田 悠哉
Two-parabolic subgroups of PSL(2,C)
PSL(2,C) 的两个抛物线子群
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    望月拓郎;Kiyonori Gomi;Makoto Sakuma
  • 通讯作者:
    Makoto Sakuma
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

作間 誠其他文献

A Gauss-Poisson correspondence and the Levy Laplacian, to appear in Interdisciplinary
高斯-泊松对应关系和利维拉普拉斯算子,出现在《跨学科》杂志上
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Jiryo Komeda;Akira Ohbuchi;作間 誠;T.Harui;藤家雪朗;Wataru Ichinose;小森洋平;小森洋平;一ノ瀬弥;S. Fujiie;Takao Kato;作間 誠;一ノ瀬弥;Takao Kato;Akira Ohbuchi;Masaaki Homma;Akira Ohbuchi;加藤崇雄;大渕朗;加藤崇雄;本間正明;K. Saito
  • 通讯作者:
    K. Saito
On the number of points of plane curve over a nite eld
有限域上平面曲线的点数
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiryo Komeda;Akira Ohbuchi;作間 誠;T.Harui;藤家雪朗;Wataru Ichinose;小森洋平;小森洋平;一ノ瀬弥;S. Fujiie;Takao Kato;作間 誠;一ノ瀬弥;Takao Kato;Akira Ohbuchi;Masaaki Homma
  • 通讯作者:
    Masaaki Homma
書評 Francis Bonahon : Low-Dimensional Geometry : From Euclidean Surfaces to Hyperbolic Knots
  • DOI:
    10.5860/choice.47-5697
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    作間 誠
  • 通讯作者:
    作間 誠
Bielliptic Weierstrass points
双椭圆魏尔斯特拉斯点
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiryo Komeda;Akira Ohbuchi;作間 誠;T.Harui;藤家雪朗;Wataru Ichinose;小森洋平;小森洋平;一ノ瀬弥;S. Fujiie;Takao Kato
  • 通讯作者:
    Takao Kato
Some mathematical remarks on the Feynman path integral for the nonrelativistic quantum electrodynamics
关于非相对论量子电动力学费曼路径积分的一些数学评论
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiryo Komeda;Akira Ohbuchi;作間 誠;T.Harui;藤家雪朗;Wataru Ichinose;小森洋平;小森洋平;一ノ瀬弥;S. Fujiie;Takao Kato;作間 誠;一ノ瀬弥
  • 通讯作者:
    一ノ瀬弥

作間 誠的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('作間 誠', 18)}}的其他基金

双曲構造と球面構造の双対性
双曲结构和球面结构的对偶性
  • 批准号:
    17654016
  • 财政年份:
    2005
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
結び目の解消トンネルと双曲構造
解结隧道和双曲线结构
  • 批准号:
    10874013
  • 财政年份:
    1998
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
階数2の不連続群と3次元多様体
2 维和 3 维流形的不连续群
  • 批准号:
    08640114
  • 财政年份:
    1996
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
3次元多様体のへガード分解と群の階数
3 维流形的 Hegard 分解和群的秩
  • 批准号:
    07640112
  • 财政年份:
    1995
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
双曲的結び目のcanonical decomposition
双曲结的正则分解
  • 批准号:
    06804005
  • 财政年份:
    1994
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
結び目のタングル分解の一意性
结缠结分解的唯一性
  • 批准号:
    02740035
  • 财政年份:
    1990
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
結び目の対称性と分岐被覆空間
结对称性和分支覆盖空间
  • 批准号:
    01740043
  • 财政年份:
    1989
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
3次元球面内の測地的絡み輪
三球体测地线纠缠环
  • 批准号:
    63740036
  • 财政年份:
    1988
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
結び目及び3次元多様体の対称性と代数的不変量
结和三维流形的对称性和代数不变量
  • 批准号:
    61740055
  • 财政年份:
    1986
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了