Collaborative Research: Long-Term Chaotic Transport in Volume-Preserving Flows

合作研究:保体积流中的长期混沌传输

基本信息

  • 批准号:
    0900018
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

0900177/0900018 Vainchtein/Grigoriev The goal of this research program is to construct a general quantitative theory of long-time resonance-driven chaotic transport and mixing in near-integrable autonomous and non-autonomous volume-preserving flows. Specific examples of microscale flows will be used to illustrate the general approach and develop specific tools that can be naturally generalized to a wide class of volume-preserving and Hamiltonian systems. The deterministic theory of resonance processes will be combined with the theory of random walks and theory of stability islands to develop a statistical long-term description of the Lagrangian transport in systems with separatrices and/or resonances. A unique feature of the planned approach is that it will apply both when chaotic advection is the only transport mechanism as well as when chaotic advection competes with thermal or molecular diffusion. This work includes integration of often disconnected methods and techniques used to describe resonant interactions and regular transport into a general transport theory for near-integrable systems, and development of a novel technique to quantify mixing rate, thoroughness, and uniformity for incompressible fluid flows. The PIs' research has direct applications to a wide range of problems in science and engineering, such as the transport of comets and asteroids through the solar system, energy exchange between excitation modes in condensed matter, and motion of charged particles in electromagnetic fields with applications to atmospheric science and magnetic confinement fusion devices. The key application is in the field of microfluidics which promises major advances in drug discovery, medical diagnostics, and national security through its impact on chemical processing and sensor technology. The research program will be tightly integrated with teaching and learning at the undergraduate and graduate levels and will include activities aimed at increased participation of underrepresented groups in research and integration of research advances into the curriculum. The PIs will also seek to extend and establish microfluidics collaborations with the plasma physics community.
0900177/0900018 Vainchtein/Grigoriev 该研究项目的目标是构建近可积自主和非自主体积保持流中长期共振驱动的混沌输运和混合的通用定量理论。将使用微尺度流动的具体示例来说明一般方法并开发可以自然推广到各种体积保持和哈密顿系统的特定工具。共振过程的确定性理论将与随机游走理论和稳定性岛理论相结合,以开发具有分离和/或共振的系统中拉格朗日输运的统计长期描述。该计划方法的一个独特之处在于,它既适用于混沌平流是唯一传输机制的情况,也适用于混沌平流与热或分子扩散竞争的情况。这项工作包括将用于描述共振相互作用和规则传输的经常分离的方法和技术集成到近可积系统的一般传输理论中,并开发一种量化不可压缩流体流动的混合速率、彻底性和均匀性的新技术。 PI 的研究可直接应用于科学和工程中的广泛问题,例如彗星和小行星在太阳系中的传输、凝聚态物质中激发模式之间的能量交换,以及电磁场中带电粒子的运动以及在大气科学和磁约束聚变装置中的应用。其关键应用是微流体领域,通过其对化学加工和传感器技术的影响,有望在药物发现、医疗诊断和国家安全方面取得重大进展。该研究计划将与本科生和研究生的教学紧密结合,并将包括旨在增加代表性不足群体参与研究以及将研究进展纳入课程的活动。 PI 还将寻求扩大和建立与等离子体物理学界的微流体合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Grigoriev其他文献

Roman Grigoriev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Grigoriev', 18)}}的其他基金

From Self-similar Solutions to Turbulent Cascades
从自相似解到湍流级联
  • 批准号:
    2032657
  • 财政年份:
    2020
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Geometry and Topology of Fluid Turbulence: Theory and Experiment
流体湍流的几何和拓扑:理论与实验
  • 批准号:
    1725587
  • 财政年份:
    2017
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
UNS: Fundamental Studies of Two-Phase Flows of Binary Fluids Driven by Temperature Gradients
UNS:温度梯度驱动的二元流体两相流的基础研究
  • 批准号:
    1511470
  • 财政年份:
    2015
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics: Dynamics Of Turbulent Flow Via Unstable Exact Navier-Stokes Solutions: Connecting Theory & Numerics With Experiments
DynSyst_Special_Topics:通过不稳定精确纳维-斯托克斯解的湍流动力学:连接理论
  • 批准号:
    1234436
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI Type II: Dynamics and Control of Cardiac Tissue
合作研究:CDI II 型:心脏组织的动力学和控制
  • 批准号:
    1028133
  • 财政年份:
    2010
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Chaotic mixing in liquid microdroplets
液体微滴的混沌混合
  • 批准号:
    0400370
  • 财政年份:
    2004
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
LTREB: Collaborative Research: Long-term changes in peatland C fluxes and the interactive role of altered hydrology, vegetation, and redox supply in a changing climate
LTREB:合作研究:泥炭地碳通量的长期变化以及气候变化中水文、植被和氧化还原供应变化的相互作用
  • 批准号:
    2411998
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330759
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330760
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
  • 批准号:
    2240418
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Environmental Context of Long Term Cultural Adaptation
合作研究:长期文化适应的环境背景
  • 批准号:
    2241119
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了