DynSyst_Special_Topics: Dynamics Of Turbulent Flow Via Unstable Exact Navier-Stokes Solutions: Connecting Theory & Numerics With Experiments

DynSyst_Special_Topics:通过不稳定精确纳维-斯托克斯解的湍流动力学:连接理论

基本信息

  • 批准号:
    1234436
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-10-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

The objective of this research program is to develop and to test experimentally a revolutionary new approach to modeling and predicting two-dimensional turbulent flows. A set of weakly unstable invariant Navier-Stokes solutions will be identified and transitions between invariant solutions will be characterized to provide a coarse global description of the nonlinear dynamics of turbulent flow. Quasi-2D flow in a shallow electrolyte layer continually driven by Lorentz forces provides the setting for theoretical, analytic and experimental development of this approach. Novel and proven techniques, such as periodic orbit theory, group representation theory, Krylov-subspace numerical methods, Newton and variational solvers will be used to develop this viewpoint, which will be tested in experiments where the flow can be measured with full spatial and temporal resolution throughout the entire flow domain.If successful, the results of this research will impact several areas of science, engineering, and medicine. Although the focus of this investigation is on fluid turbulence in two dimensions, the proposed approach has the potential to provide new ways to model, and ultimately control, a wide range of spatiotemporally chaotic systems, such as magnetic confinement fusion reactors and abnormal cardiac dynamics (from mild arrhythmias to potentially lethal fibrillation). The most immediate practical application, however, is the reduction of turbulent drag responsible for a significant part of the fuel consumed in the automotive, aviation, and shipping industries. Even an incremental reduction of drag by the proposed flow control methodology would have a tremendous economic impact. All software and data produced by the research program will be made publicly available with a central aim of lowering the barrier of entry to dynamical systems research by providing well-documented, easy-to-use interfaces to state-of-the-art numerical algorithms.
本研究计划的目标是开发和实验测试一种革命性的新方法来模拟和预测二维湍流。一组弱不稳定不变的Navier-Stokes解将被识别,不变解之间的转换将被表征,以提供湍流非线性动力学的粗略全局描述。由洛伦兹力持续驱动的浅电解质层中的准二维流动为该方法的理论、分析和实验发展提供了条件。新的和成熟的技术,如周期轨道理论,群表示理论,krylov -子空间数值方法,牛顿和变分求解将用于发展这一观点,这将在实验中进行测试,在整个流域中可以用全空间和时间分辨率测量流。如果成功,这项研究的结果将影响科学、工程和医学的几个领域。尽管这项研究的重点是二维的流体湍流,但所提出的方法有可能提供新的方法来建模并最终控制广泛的时空混沌系统,如磁约束聚变反应堆和异常心脏动力学(从轻度心律失常到潜在的致命颤动)。然而,最直接的实际应用是减少湍流阻力,而湍流阻力是汽车、航空和航运行业消耗燃料的重要组成部分。即使是通过提出的流量控制方法来减少阻力,也会产生巨大的经济影响。该研究项目产生的所有软件和数据都将公开,其中心目标是通过为最先进的数值算法提供记录良好、易于使用的界面,降低进入动力系统研究的门槛。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Streamwise localization of traveling wave solutions in channel flow
河道流中行波解的流向定位
  • DOI:
    10.1103/physreve.95.033124
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Barnett, Joshua;Gurevich, Daniel R.;Grigoriev, Roman O.
  • 通讯作者:
    Grigoriev, Roman O.
Unstable equilibria and invariant manifolds in quasi-two-dimensional Kolmogorov-like flow
  • DOI:
    10.1103/physreve.98.023105
  • 发表时间:
    2018-08-13
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Suri, Balachandra;Tithof, Jeffrey;Schatz, Michael F.
  • 通讯作者:
    Schatz, Michael F.
Forecasting Fluid Flows Using the Geometry of Turbulence
  • DOI:
    10.1103/physrevlett.118.114501
  • 发表时间:
    2017-03-15
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Suri, Balachandra;Tithof, Jeffrey;Schatz, Michael F.
  • 通讯作者:
    Schatz, Michael F.
Velocity profile in a two-layer Kolmogorov-like flow
  • DOI:
    10.1063/1.4873417
  • 发表时间:
    2014-05-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Suri, Balachandra;Tithof, Jeffrey;Schatz, Michael F.
  • 通讯作者:
    Schatz, Michael F.
Bifurcations in a quasi-two-dimensional Kolmogorov-like flow
  • DOI:
    10.1017/jfm.2017.553
  • 发表时间:
    2017-10-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tithof, Jeffrey;Suri, Balachandra;Schatz, Michael F.
  • 通讯作者:
    Schatz, Michael F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Grigoriev其他文献

Roman Grigoriev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Grigoriev', 18)}}的其他基金

From Self-similar Solutions to Turbulent Cascades
从自相似解到湍流级联
  • 批准号:
    2032657
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Geometry and Topology of Fluid Turbulence: Theory and Experiment
流体湍流的几何和拓扑:理论与实验
  • 批准号:
    1725587
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
UNS: Fundamental Studies of Two-Phase Flows of Binary Fluids Driven by Temperature Gradients
UNS:温度梯度驱动的二元流体两相流的基础研究
  • 批准号:
    1511470
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI Type II: Dynamics and Control of Cardiac Tissue
合作研究:CDI II 型:心脏组织的动力学和控制
  • 批准号:
    1028133
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Long-Term Chaotic Transport in Volume-Preserving Flows
合作研究:保体积流中的长期混沌传输
  • 批准号:
    0900018
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Chaotic mixing in liquid microdroplets
液体微滴的混沌混合
  • 批准号:
    0400370
  • 财政年份:
    2004
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Flow Dynamics in Buoyancy-Driven Variable-Density Turbulent Mixing with Compressibility Effects
具有压缩效应的浮力驱动变密度湍流混合中的流动动力学
  • 批准号:
    2234415
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Effects of inflow perturbations on the energy transfer and wake vortex dynamics of a 2-DOF cylinder undergoing vortex-induced vibration near a plane boundary in turbulent flows
流入扰动对在湍流中平面边界附近经历涡激振动的 2 自由度圆柱体的能量传递和尾涡动力学的影响
  • 批准号:
    569540-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
SBIR Phase I: A Flexion-Based Computational Fluid Dynamics Tool for the Fast Computation of Turbulent Flow over Complex Geometries
SBIR 第一阶段:基于弯曲的计算流体动力学工具,用于快速计算复杂几何形状的湍流
  • 批准号:
    2133757
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Dynamics and dispersion of microplastics in turbulent shallow water flows
浅水湍流中微塑料的动力学和分散
  • 批准号:
    DE210101396
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Early Career Researcher Award
Momentum transfer dynamics and inter-scale energy transfer in turbulent premixed combustion.
湍流预混燃烧中的动量传递动力学和尺度间能量传递。
  • 批准号:
    532690-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Understanding the Turbulent Dynamics of Convective Bursts and Tropical Cyclone Intensification Using Large Eddy Simulations and High-Order Numerics
合作研究:利用大涡模拟和高阶数值了解对流爆发和热带气旋增强的湍流动力学
  • 批准号:
    2121366
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Turbulent Dynamics of Convective Bursts and Tropical Cyclone Intensification Using Large Eddy Simulations and High-Order Numerics
合作研究:利用大涡模拟和高阶数值了解对流爆发和热带气旋增强的湍流动力学
  • 批准号:
    2121367
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
A study of turbulent dynamics and geometric universality in a dense bacterial suspension
浓密细菌悬浮液中的湍流动力学和几何普适性研究
  • 批准号:
    20J10039
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Momentum transfer dynamics and inter-scale energy transfer in turbulent premixed combustion.
湍流预混燃烧中的动量传递动力学和尺度间能量传递。
  • 批准号:
    532690-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Momentum transfer dynamics and inter-scale energy transfer in turbulent premixed combustion.
湍流预混燃烧中的动量传递动力学和尺度间能量传递。
  • 批准号:
    532690-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了