From Self-similar Solutions to Turbulent Cascades
从自相似解到湍流级联
基本信息
- 批准号:2032657
- 负责人:
- 金额:$ 32.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Turbulent fluid flows are both ubiquitous and immensely important in the modern society. They shape climate and weather, control transmission of many infectious diseases and the spreading of pollution, and determine the fuel-efficiency of our cars, airplanes, and ships. Yet, many of turbulent flows’ properties remain mysterious despite centuries of systematic research. In particular, we do not fully understand the principles that control the motion of fluids such at air and water at very small scales. As a result, despite continuing advances in computing power, numerical simulations resolving the small-scale structure of turbulent flows remains out of reach, limiting our ability to make sustained improvements in numerous civilian and military applications. This project harnesses recent numerical and theoretical advances to describe how fluid motions at one scale can generate motions at another (often much larger or much smaller) scale, yielding a hierarchy of eddies responsible for the unique and beautiful structure of fluid turbulence. This research project uses a combination of novel numerical methods and innovative theoretical approaches to addresses several fundamental problems in fluid turbulence that remain largely unsolved despite almost a century of concerted effort. One of the oldest, most fundamental, and least understood issues in fluid turbulence is the multi-scale structure of the flow at high Reynolds numbers. Such structure emerges due to cascades of various quantities, such as energy, vorticity, and helicity, describing the fluid flow. Our understanding of the physical mechanisms of respective cascades is very limited. For instance, it is not entirely clear what determines the direction of the cascades, i.e., whether the flux of a particular quantity is towards large scales (inverse cascade) or small scales (direct cascade). This project aims to develop a dynamical description of direct and inverse cascades in two spatial dimensions. Advanced numerical methods for finding self-similar solutions to inviscid governing equations are used to uncover the fundamental physical mechanisms describing scale interaction in fluid flows that is responsible for the multi-scale nature of developed turbulence. Established tools from dynamical systems theory are leveraged to develop a comprehensive quantitative theory of turbulent cascades that does not rely on unproven assumptions and approximations that underlie existing statistical theories of turbulence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流流动在现代社会中是一个普遍存在且非常重要的问题。它们影响着气候和天气,控制着许多传染病的传播和污染的扩散,决定着我们的汽车、飞机和轮船的燃油效率。然而,尽管有几个世纪的系统研究,湍流的许多性质仍然是神秘的。特别是,我们还没有完全理解在非常小的尺度上控制空气和水等流体运动的原理。因此,尽管计算能力不断进步,但解决湍流小尺度结构的数值模拟仍然遥不可及,限制了我们在许多民用和军事应用中进行持续改进的能力。该项目利用最近的数值和理论进展来描述一个尺度的流体运动如何在另一个尺度(通常更大或更小)产生运动,产生一个负责流体湍流独特而美丽的结构的漩涡层次。 该研究项目采用新颖的数值方法和创新的理论方法相结合,以解决流体湍流中的几个基本问题,尽管近世纪的共同努力,这些问题在很大程度上仍未解决。流体湍流中最古老、最基本和最不为人所知的问题之一是高雷诺数下流动的多尺度结构。这种结构的出现是由于描述流体流动的各种量的级联,例如能量、涡度和螺旋度。我们对各个级联的物理机制的理解非常有限。例如,不完全清楚是什么决定了叶栅的方向,即,无论特定量的通量是朝向大尺度(逆级联)还是朝向小尺度(直接级联)。该项目旨在对两个空间维度的正叶栅和逆叶栅进行动态描述。先进的数值方法,寻找自相似的解决方案,无粘控制方程被用来揭示基本的物理机制,描述规模的相互作用,在流体流动中,是负责开发的湍流的多尺度性质。从动力系统理论建立的工具被用来开发一个全面的定量理论的湍流级联,不依赖于未经证实的假设和近似的基础上现有的统计理论turbulence.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact coherent structures in fully developed two-dimensional turbulence
充分发展的二维湍流中的精确相干结构
- DOI:10.1017/jfm.2023.584
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Zhigunov, Dmitriy;Grigoriev, Roman O.
- 通讯作者:Grigoriev, Roman O.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Grigoriev其他文献
Roman Grigoriev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Grigoriev', 18)}}的其他基金
Geometry and Topology of Fluid Turbulence: Theory and Experiment
流体湍流的几何和拓扑:理论与实验
- 批准号:
1725587 - 财政年份:2017
- 资助金额:
$ 32.27万 - 项目类别:
Standard Grant
UNS: Fundamental Studies of Two-Phase Flows of Binary Fluids Driven by Temperature Gradients
UNS:温度梯度驱动的二元流体两相流的基础研究
- 批准号:
1511470 - 财政年份:2015
- 资助金额:
$ 32.27万 - 项目类别:
Standard Grant
DynSyst_Special_Topics: Dynamics Of Turbulent Flow Via Unstable Exact Navier-Stokes Solutions: Connecting Theory & Numerics With Experiments
DynSyst_Special_Topics:通过不稳定精确纳维-斯托克斯解的湍流动力学:连接理论
- 批准号:
1234436 - 财政年份:2012
- 资助金额:
$ 32.27万 - 项目类别:
Standard Grant
Collaborative Research: CDI Type II: Dynamics and Control of Cardiac Tissue
合作研究:CDI II 型:心脏组织的动力学和控制
- 批准号:
1028133 - 财政年份:2010
- 资助金额:
$ 32.27万 - 项目类别:
Standard Grant
Collaborative Research: Long-Term Chaotic Transport in Volume-Preserving Flows
合作研究:保体积流中的长期混沌传输
- 批准号:
0900018 - 财政年份:2009
- 资助金额:
$ 32.27万 - 项目类别:
Continuing Grant
Chaotic mixing in liquid microdroplets
液体微滴的混沌混合
- 批准号:
0400370 - 财政年份:2004
- 资助金额:
$ 32.27万 - 项目类别:
Standard Grant
相似国自然基金
小麦SIMILAR TO RCD-ONE基因调控氧化胁迫逆境响应的作用机制研究
- 批准号:31771353
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
分级超级碳纳米管及分级轻质结构的性能研究
- 批准号:10972111
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
PFI-TT: Decentralized, On-Demand Production of Dialysis Solutions and Similar Medical Fluids
PFI-TT:透析溶液和类似医用液体的分散式按需生产
- 批准号:
2234509 - 财政年份:2023
- 资助金额:
$ 32.27万 - 项目类别:
Standard Grant
Self-similar Solutions of Geometric Flows
几何流的自相似解
- 批准号:
2018221 - 财政年份:2019
- 资助金额:
$ 32.27万 - 项目类别:
Standard Grant
Self-similar Solutions of Geometric Flows
几何流的自相似解
- 批准号:
1406240 - 财政年份:2014
- 资助金额:
$ 32.27万 - 项目类别:
Standard Grant
Self-similar Solutions of Geometric Flows
几何流的自相似解
- 批准号:
1834824 - 财政年份:2014
- 资助金额:
$ 32.27万 - 项目类别:
Standard Grant
Self-similar solutions of geometric flows and GIT stability
几何流和GIT稳定性的自相似解
- 批准号:
25247003 - 财政年份:2013
- 资助金额:
$ 32.27万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Space-Time Resonances and Asymptotics; Stability of Self-Similar Solutions
时空共振和渐近;
- 批准号:
1101269 - 财政年份:2011
- 资助金额:
$ 32.27万 - 项目类别:
Continuing Grant
Structure of solutions to the system of equations describing chemotactic aggregation of cellular slime molds
描述细胞粘菌趋化聚集的方程组解的结构
- 批准号:
13640216 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on Singularities of Solutions to Nonlinear Partial Differential Equations
非线性偏微分方程解的奇异性分析
- 批准号:
11640173 - 财政年份:1999
- 资助金额:
$ 32.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure of solutions to Keller-Segel system
Keller-Segel 系统解的结构
- 批准号:
11640203 - 财政年份:1999
- 资助金额:
$ 32.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure of solutions to the differential equations arising in natural phenomina
自然现象中出现的微分方程解的结构
- 批准号:
09640191 - 财政年份:1997
- 资助金额:
$ 32.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




