Free Resolutions
免费决议
基本信息
- 批准号:0900931
- 负责人:
- 金额:$ 10.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project is in the field of Commutative Algebra. The proposed research deals with the structure of graded free resolutions, their numerical invariants, and applications. The general research goal is to study graded free resolutions using a variety of methods from Commutative Algebra, Computational Algebra, and Topological Combinatorics. The project focuses on: Borel ideals and applications of mapping cones over Clements-Lindstrom rings, resolutions of monomial edge ideals, and infinite cellular resolutions. The proposed research involves interdisciplinary approaches and connects Commutative Algebra with the fields of Combinatorics, Computational Algebra, and Topology.The idea to associate a free resolution to a finitely generated module was introduced by Hilbert in two famous papers in 1890 and 1893. He proved that over a polynomial ring (over a field) every finitely generated module has a finite free resolution. If the ring and the module are graded then there exists a minimal free resolution; it is unique up to an isomorphism and is contained in any free resolution. The minimal free resolution is graded, and its properties are closely related to the invariants of the module. From another point of view: in essence constructing a free resolution consists of repeatedly solving systems of linear equations. Recent computational methods have made it possible to compute graded free resolutions by computer. For many years, free resolutions have been both central objects and fruitful tools in Commutative Algebra; they have many applications in other mathematical fields.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目是在交换代数领域。建议的研究涉及结构的分级自由决议,其数值不变量,和应用。一般的研究目标是使用交换代数,计算代数和拓扑组合学的各种方法来研究分级自由分辨率。该项目的重点是:Borel理想和Clements-Lindstrom环上映射锥的应用,单项边理想的分解和无限胞腔分解。希尔伯特在1890年和1893年的两篇著名论文中提出了将自由分解与可交换生成模联系起来的思想。他证明,在一个多项式环(在一个领域)的每一个numbergenerated模块有一个有限的自由决议。如果环和模是分次的,则存在一个极小自由分解;它在同构下是唯一的,并且包含在任何自由分解中。最小自由归结是分次的,它的性质与模的不变量密切相关。从另一个角度来看:在本质上,构建一个自由的解决方案包括反复求解线性方程组。最近的计算方法使计算机计算分级自由分辨率成为可能。多年来,自由归结一直是交换代数的中心对象和卓有成效的工具,在其他数学领域也有许多应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irena Peeva其他文献
Koszul graded Möbius algebras and strongly chordal graphs
- DOI:
10.1007/s00029-025-01029-6 - 发表时间:
2025-03-05 - 期刊:
- 影响因子:1.200
- 作者:
Adam LaClair;Matthew Mastroeni;Jason McCullough;Irena Peeva - 通讯作者:
Irena Peeva
Far-Out Syzygies
遥远的 Syzygies
- DOI:
10.1007/978-3-319-26437-0_6 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
David Eisenbud;Irena Peeva - 通讯作者:
Irena Peeva
Commutative Algebra, Expository Papers Dedicated to David Eisenbud on the Occasion of his 75th Birthday
交换代数,在 David Eisenbud 75 岁生日之际献给他的说明性论文
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Iyengar Srikanth B.;Takahashi Ryo;Ryo Takahashi;高橋 亮;高橋 亮;飯間 圭一郎; 松井 紘樹; 嶋田 芳; 高橋 亮;高橋 亮;Ryo Takahashi;高橋 亮;高橋 亮;木村 海渡; 大竹 優也; 高橋 亮;高橋 亮;高橋 亮;高橋 亮;高橋 亮;大竹 優也; 木村 海渡; 高橋 亮;高橋 亮;木村 海渡; 大竹 優也; 高橋 亮;Hiroki Matsui; Ryo Takahashi;高橋 亮;Mohsen Gheibi; David A. Jorgensen; Ryo Takahashi;高橋 亮;高橋 亮;Ryo Takahashi;高橋 亮;高橋 亮;高橋 亮;Ryo Takahashi;高橋 亮;Olgur Celikbas; Justin Lyle; Ryo Takahashi; Yongwei Yao;Mohsen Gheibi; David A. Jorgensen; Ryo Takahashi;Olgur Celikbas; Ryo Takahashi;Ryo Takahashi;Ryo Takahashi;Ryo Takahashi;高橋 亮;Ryo Takahashi;高橋 亮;高橋 亮;高橋 亮;Irena Peeva - 通讯作者:
Irena Peeva
Applications of mapping cones over Clements–Lindström rings
- DOI:
10.1016/j.jalgebra.2010.10.006 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Vesselin Gasharov;Satoshi Murai;Irena Peeva - 通讯作者:
Irena Peeva
Irena Peeva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irena Peeva', 18)}}的其他基金
Minimal Free Resolutions and Syzygies
最小的自由分辨率和 Syzygies
- 批准号:
2001064 - 财政年份:2020
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Free Resolutions in Commutative Algebra
交换代数中的自由解析
- 批准号:
1702125 - 财政年份:2017
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Homology of Monomial and Toric Ideals
单项式和环面理想的同调
- 批准号:
9970334 - 财政年份:1999
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
相似海外基金
Finite Group Actions on Free Resolutions
自由解的有限群动作
- 批准号:
2200844 - 财政年份:2022
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Minimal Free Resolutions and Syzygies
最小的自由分辨率和 Syzygies
- 批准号:
2001064 - 财政年份:2020
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Free Resolutions, K-Theory and dg-Categories
自由分辨率、K 理论和 dg 类别
- 批准号:
1901848 - 财政年份:2019
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Free resolutions and computations, Berkeley 2017
免费分辨率和计算,伯克利 2017 年
- 批准号:
1701922 - 财政年份:2017
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Free Resolutions in Commutative Algebra
交换代数中的自由解析
- 批准号:
1702125 - 财政年份:2017
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Workshop: Structures on Free Resolutions
研讨会:自由决议的结构
- 批准号:
1743011 - 财政年份:2017
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
- 批准号:
1601865 - 财政年份:2016
- 资助金额:
$ 10.75万 - 项目类别:
Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
- 批准号:
1503605 - 财政年份:2015
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
Free Resolutions and Representation Theory
自由决议和表示理论
- 批准号:
1400740 - 财政年份:2014
- 资助金额:
$ 10.75万 - 项目类别:
Continuing Grant