Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
基本信息
- 批准号:1601865
- 负责人:
- 金额:$ 26.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns commutative algebra with a view towards algebraic geometry. Often, the most effective method to solve a problem is to create a mathematical model. Frequently, such models involve unknown parameters related by several equations that are often impossible to solve exactly. Commutative algebra is the qualitative study of such systems of polynomial equations. Its applications are far-reaching and include diverse fields such as computer science, cryptography, coding theory, robotics, pattern recognition, and theoretical physics. One can study the sets of solutions of these systems either geometrically or algebraically. This project deals with the algebraic approach. One of the goals of the project is to understand the smallest number of equations needed to describe a geometric object like a curve or surface. Another is to construct the system of equations defining a given geometric object. A third goal is the study of the relations among a given set of polynomial equations, the relations among the relations, and so on. The project involves undergraduate students, graduate students, and postdoctoral fellows in the research. This research project has three main themes. The first is to develop criteria for a variety in projective space to be a set-theoretic complete intersection. A fundamental tool to solve this problem is the theory of local cohomology modules. Local cohomology modules encode the algebraic and topological structure of an algebraic variety. As modules over the ring, local cohomology modules are huge (neither finitely generated nor Artinian), hence intractable. However, as modules over the Weil algebra they can be filtered by simple objects and become manageable. Hence an important task is to understand the D-module structure of local cohomology modules. The second theme is the study of local rings using the notion of distance. This notion was introduced in recent work of the investigator and collaborators to understand the integral closure of ideals. The idea is to use distance as a substitute for shifts in homogeneous resolutions and for the Castelnuovo-Mumford regularity of graded modules. The main goal is to prove general results that are inspired by statements in the graded case. The last theme is to study the implicit equations defining the graph and the image of rational maps between projective spaces. This is a classical problem in elimination theory, commutative algebra, and algebraic geometry with applications, for instance, in geometric modeling.
本研究计画是以代数几何的观点来探讨交换代数。通常,解决问题最有效的方法是建立数学模型。通常,这样的模型涉及未知参数相关的几个方程,往往是不可能精确求解。交换代数是对这种多项式方程组的定性研究。它的应用是深远的,包括不同的领域,如计算机科学,密码学,编码理论,机器人,模式识别和理论物理。人们可以用几何方法或代数方法研究这些系统的解集。这个项目涉及代数方法。该项目的目标之一是了解描述曲线或曲面等几何对象所需的最小数量的方程。另一种是构造定义给定几何对象的方程组。第三个目标是研究给定的多项式方程组之间的关系,关系之间的关系等。该项目涉及本科生,研究生和博士后研究员。这个研究项目有三个主题。第一个是发展标准的各种在射影空间是一个集论完全相交。局部上同调模理论是解决这一问题的基本工具。局部上同调模编码了代数簇的代数和拓扑结构。作为环上的模,局部上同调模是巨大的(既不是代数生成的,也不是阿廷的),因此是难以处理的。然而,作为Weil代数上的模块,它们可以被简单的对象过滤,变得易于管理。因此,一个重要的任务是了解局部上同调模的D-模结构。第二个主题是使用距离的概念研究局部环。这个概念在最近的研究者和合作者的工作中引入,以理解理想的积分闭包。我们的想法是使用距离作为替代齐次分辨率的移位和分次模的Castelnuovo-Mumford正则性。主要目标是证明一般的结果,启发语句的分级情况下。最后一个主题是研究定义射影空间之间有理映射的图形和图像的隐式方程。这是一个经典的问题,在消除理论,交换代数,代数几何与应用,例如,在几何建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claudia Polini其他文献
<em>j</em>-Multiplicity and depth of associated graded modules
- DOI:
10.1016/j.jalgebra.2013.01.001 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:
- 作者:
Claudia Polini;Yu Xie - 通讯作者:
Yu Xie
The structure of the core of ideals
- DOI:
10.1007/pl00004502 - 发表时间:
2001-09-01 - 期刊:
- 影响因子:1.400
- 作者:
Alberto Corso;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
The bi-graded structure of symmetric algebras with applications to Rees rings
- DOI:
10.1016/j.jalgebra.2016.08.014 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kustin;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Claudia Polini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claudia Polini', 18)}}的其他基金
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
- 批准号:
2201110 - 财政年份:2022
- 资助金额:
$ 26.2万 - 项目类别:
Standard Grant
Studies on Local Cohomology, Derivations, Integral Dependence, and Blowup Algebras
局部上同调、导数、积分相关性和爆炸代数的研究
- 批准号:
1902033 - 财政年份:2019
- 资助金额:
$ 26.2万 - 项目类别:
Standard Grant
Studies on Cores of Ideals and Blowup Algebras
理想核心与爆炸代数研究
- 批准号:
0600991 - 财政年份:2006
- 资助金额:
$ 26.2万 - 项目类别:
Standard Grant
US-Brazil Planning Visit: Ubiquity of Blowup Algebras
美国-巴西计划访问:爆炸代数的普遍性
- 批准号:
0551104 - 财政年份:2006
- 资助金额:
$ 26.2万 - 项目类别:
Standard Grant
Midwest Algebra, Geometry and their Interactions Conference; Notre Dame, IN; October 8-11, 2005
中西部代数、几何及其相互作用会议;
- 批准号:
0509607 - 财政年份:2005
- 资助金额:
$ 26.2万 - 项目类别:
Standard Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
- 批准号:
0196199 - 财政年份:2000
- 资助金额:
$ 26.2万 - 项目类别:
Standard Grant
Linkage and Cohen-Macaulayness of Blowup Algebras
爆炸代数的联系和 Cohen-Macaulayness
- 批准号:
9970344 - 财政年份:1999
- 资助金额:
$ 26.2万 - 项目类别:
Standard Grant
相似海外基金
Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
- 批准号:
2223126 - 财政年份:2022
- 资助金额:
$ 26.2万 - 项目类别:
Continuing Grant
Computer algebra algorithms and image set compression and encryption
计算机代数算法和图像集压缩和加密
- 批准号:
288300-2007 - 财政年份:2011
- 资助金额:
$ 26.2万 - 项目类别:
Discovery Grants Program - Individual
Determining Algebra Readiness and Cognitive Skills Profiles by Using a Diagnostic Cognitive Model to Set a Performance Standard on a Pre-Algebra Test
通过使用诊断认知模型来确定代数准备情况和认知技能概况,以设定预代数测试的表现标准
- 批准号:
1109429 - 财政年份:2011
- 资助金额:
$ 26.2万 - 项目类别:
Standard Grant
Interactions between C*-algebra and set theory
C* 代数和集合论之间的相互作用
- 批准号:
1067726 - 财政年份:2011
- 资助金额:
$ 26.2万 - 项目类别:
Continuing Grant
Computer algebra algorithms and image set compression and encryption
计算机代数算法和图像集压缩和加密
- 批准号:
288300-2007 - 财政年份:2010
- 资助金额:
$ 26.2万 - 项目类别:
Discovery Grants Program - Individual
Computer algebra algorithms and image set compression and encryption
计算机代数算法和图像集压缩和加密
- 批准号:
288300-2007 - 财政年份:2009
- 资助金额:
$ 26.2万 - 项目类别:
Discovery Grants Program - Individual
Computer algebra algorithms and image set compression and encryption
计算机代数算法和图像集压缩和加密
- 批准号:
288300-2007 - 财政年份:2008
- 资助金额:
$ 26.2万 - 项目类别:
Discovery Grants Program - Individual
Computer algebra algorithms and image set compression and encryption
计算机代数算法和图像集压缩和加密
- 批准号:
288300-2007 - 财政年份:2007
- 资助金额:
$ 26.2万 - 项目类别:
Discovery Grants Program - Individual
NSF-CGP Science & Engineering Fellows Program: Applications of Set Theory in Algebra
NSF-CGP 科学
- 批准号:
9503178 - 财政年份:1995
- 资助金额:
$ 26.2万 - 项目类别:
Standard Grant
Applications of model theory and set theory to algebra
模型论和集合论在代数中的应用
- 批准号:
8948-1991 - 财政年份:1992
- 资助金额:
$ 26.2万 - 项目类别:
Discovery Grants Program - Individual