Nonlinear harmonic analysis and partial differential equations of Lane-Emden and Riccati type
非线性调和分析以及 Lane-Emden 和 Riccati 型偏微分方程
基本信息
- 批准号:0901083
- 负责人:
- 金额:$ 11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract (Nguyen, 0901083)This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project will investigate several problems stemming from a class of quasi-linear and fully nonlinear elliptic equations of Lane-Emden and Riccati type with singular coefficients and measure data, and with nonlinear source terms that involve both solutions and their derivatives. Various methods from nonlinear potential theory, harmonic analysis, and the theory of partial differential equations are proposed to obtain sharp a priori estimates for solutions and their derivatives, to derive capacitary inequalities, and to establish the boundedness of the related nonlinear singular operators. As a consequence, complete characterizations of solvability will be found in different explicit terms including geometric (capacitary) or potential theoretic terms. Moreover, removable singularities of solutions and a more general class of operators and nonlinearities related to subelliptic geometry and nonstandard Sobolev spaces will also be considered.The proposed research is closely related to central problems in nonlinear partial differential equations that require hard analysis and major tools from different branches of mathematics, such as harmonic analysis, nonlinear potential theory, control theory, and differential geometry. Many of the ideas to be developed in this project are new, and they promise to bring new results to bear on applications to diverse problems in both pure and applied mathematics. These applications involve the development of models to describe various phenomena that are studied in physics and engineering, including heat transfer, mass transfer, and fluid flow. The proposed research is tightly integrated with the teaching of graduate students and the interaction of the principal investigator with a network of researchers worldwide, which promotes the exchange of results and ideas between diverse scientific communities.
摘要(阮,0901083)该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助。本计画将研究一类具奇异系数与量测资料之Lane-Emden与Riccati型拟线性与全非线性椭圆型方程,其非线性源项包含解与其导数。从非线性势理论,调和分析,偏微分方程理论的各种方法被提出来获得尖锐的先验估计的解决方案和他们的衍生物,推导出容量不等式,并建立相关的非线性奇异算子的有界性。因此,完整的可解性特征将在不同的明确条款,包括几何(电容)或潜在的理论条款。 此外,解的可移除奇异性和更一般的一类算子以及与次椭圆几何和非标准Sobolev空间相关的非线性也将被考虑。拟议的研究与非线性偏微分方程中的中心问题密切相关,这些问题需要来自不同数学分支的硬分析和主要工具,如调和分析,非线性势理论,控制理论和微分几何。在这个项目中开发的许多想法都是新的,他们承诺带来新的结果,以承担在纯数学和应用数学的各种问题的应用。这些应用涉及模型的开发,以描述物理和工程中研究的各种现象,包括传热,传质和流体流动。拟议的研究与研究生的教学以及首席研究员与全球研究人员网络的互动紧密结合,这促进了不同科学界之间的成果和想法交流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phuc Nguyen其他文献
Rethinking Image-based Table Recognition Using Weakly Supervised Methods
使用弱监督方法重新思考基于图像的表格识别
- DOI:
10.5220/0011682600003411 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
N. Ly;A. Takasu;Phuc Nguyen;H. Takeda - 通讯作者:
H. Takeda
Modelling uncertainty in population monitoring data
人口监测数据的不确定性建模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Phuc Nguyen - 通讯作者:
Phuc Nguyen
Tripolar concentric ring electrodes for capturing localised electroencephalography signals during sleep.
三极同心环电极,用于捕获睡眠期间的局部脑电图信号。
- DOI:
10.1016/j.sleep.2023.11.1124 - 发表时间:
2024 - 期刊:
- 影响因子:4.4
- 作者:
N. Stuart;J. Manners;E. Kemps;Phuc Nguyen;B. Lechat;P. Catcheside;Hannah Scott - 通讯作者:
Hannah Scott
Compulsory land acquisition for urban expansion: livelihood reconstruction after land loss in Hue’s peri-urban areas, Central Vietnam
城市扩张强制征地:越南中部顺化城郊地区失去土地后的生计重建
- DOI:
10.3828/idpr.2016.32 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Phuc Nguyen;A. V. Westen;A. Zoomers - 通讯作者:
A. Zoomers
Photometry based Blood Oxygen Estimation through Smartphone Cameras
通过智能手机摄像头进行基于光度测定的血氧估算
- DOI:
10.1145/3131348.3131353 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Nam Bui;Anh Nguyen;Phuc Nguyen;Anh;A. Ashok;Thang N. Dinh;R. Deterding;Tam N. Vu - 通讯作者:
Tam N. Vu
Phuc Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Phuc Nguyen', 18)}}的其他基金
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2401415 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2132112 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
系数在局部常层中的上同调理论及其到代数几何的应用
- 批准号:10471105
- 批准年份:2004
- 资助金额:17.0 万元
- 项目类别:面上项目
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
- 批准号:30470495
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Lp-Convergence in Nonlinear Harmonic Analysis
非线性谐波分析中的 Lp 收敛
- 批准号:
562822-2021 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
University Undergraduate Student Research Awards
Nonlinear harmonic analysis and dispersive partial differential equations
非线性调和分析和色散偏微分方程
- 批准号:
DP200101065 - 财政年份:2020
- 资助金额:
$ 11万 - 项目类别:
Discovery Projects
Applied Harmonic Analysis to Non-Convex Optimizations and Nonlinear Matrix Analysis
将调和分析应用于非凸优化和非线性矩阵分析
- 批准号:
1816608 - 财政年份:2018
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
Harmonic Analysis Challenges in Nonlinear Dispersive Partial Differential Equations
非线性色散偏微分方程中的调和分析挑战
- 批准号:
1500707 - 财政年份:2015
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
Analysis of standing waves for nonlinear Schroedinger equations with harmonic potential
具有谐波势的非线性薛定谔方程的驻波分析
- 批准号:
26800074 - 财政年份:2014
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Steady-State Analysis of Nonlinear Circuits using the Harmonic Balance on Multi-GPU Architecture
在多 GPU 架构上使用谐波平衡进行非线性电路的稳态分析
- 批准号:
470238-2014 - 财政年份:2014
- 资助金额:
$ 11万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Ultrafast Nonlinear Optical Approaches toward High-Throughput Membrane Protein Na
超快非线性光学方法制备高通量膜蛋白 Na
- 批准号:
8824950 - 财政年份:2013
- 资助金额:
$ 11万 - 项目类别:
Ultrafast Nonlinear Optical Approaches toward High-Throughput Membrane Protein Na
超快非线性光学方法制备高通量膜蛋白 Na
- 批准号:
8419793 - 财政年份:2013
- 资助金额:
$ 11万 - 项目类别:
Ultrafast Nonlinear Optical Approaches toward High-Throughput Membrane Protein Na
超快非线性光学方法制备高通量膜蛋白 Na
- 批准号:
8644270 - 财政年份:2013
- 资助金额:
$ 11万 - 项目类别:
Nonlinear Sobolev Inequalities, Potential Theory and Harmonic Analysis
非线性 Sobolev 不等式、势理论和调和分析
- 批准号:
1161622 - 财政年份:2012
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant