Affine combinatorics, Schubert calculus, and total positivity
仿射组合学、舒伯特微积分和总积极性
基本信息
- 批准号:0901111
- 负责人:
- 金额:$ 15.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPrincipal Investigator: Lam, Thomas Proposal Number: DMS - 0901111 Institution: Affine combinatorics, Schubert calculus, and total positivityTitle: Harvard UniversityThe PI proposes to develop combinatorics arising from affine Lie algebras and loop groups. The PI with collaborators will study the Schubert calculus of flag varieties of affine Lie groups. This includes understanding the geometry of Schubert varieties and the combinatorics of the polynomials representing Schubert varieties in (co)homology and K-(co)homology. Together with co-workers, the PI will also develop a theory of total positivity for loop groups, and for their flag varieties. The theory being developed generalizes the classical Edrei-Thoma classification of characters of the infinite symmetric group. Furthermore, new combinatorics for Coxeter groups occurs, including a weak order for the limiting elements of a Coxeter group. In another direction, the PI with collaborators will study the convex geometry of the affine Coxeter arrangement, and in particular, certain polytopes which occur in the study of affine Schubert varieties and total positivity of the affine Grassmannian.The PI's research is in the area of combinatorics, which studies how to count discrete objects. The PI studies combinatorial problems which arise from geometry (studying shapes of objects in space) and algebraic structures (studying solutions to polynomial equations). One of the on-going themes of the PI's work is the study of (positive) numbers which arise in mathematics. These numbers may occur when counting the ways geometrical objects interact in space, or by couting certain solutions to polynomial equations. In particular, the PI aims to understand the "positive" part of a geometrical figure in the same way the positive real axis is the "positive" part of the real line. The PI's work will have a significant impact on the understanding of the relationships between geometry, algebra, and combinatorics.
主要研究人员:LAM,Thomas建议编号:DMS-0901111机构:仿射组合学、舒伯特演算和全正性标题:哈佛大学PI建议发展源于仿射李代数和环群的组合学。PI和合作者将研究仿射李群的FLAG簇的Schubert演算。这包括了解Schubert簇的几何,以及表示Schubert簇在(上)同调和K-(Co)同调中的多项式的组合。PI还将与同事一起开发环路群及其旗帜品种的全正性理论。正在发展的理论推广了经典的Edrei-Thoma关于无限对称群的特征标的分类。此外,出现了Coxeter群的新的组合学,包括Coxeter群的极限元素的弱序。在另一个方向,PI将与合作者一起研究仿射Coxeter排列的凸几何,特别是在仿射Schubert簇和仿射Grassmannian的全正性的研究中出现的某些多面体。PI的研究是在组合学领域,研究如何计算离散对象。PI研究几何(研究空间中物体的形状)和代数结构(研究多项式方程的解)产生的组合问题。PI工作的一个持续主题是研究数学中出现的(正)数。当计算几何物体在空间中相互作用的方式时,或通过计算多项式方程的某些解时,可能会出现这些数字。特别是,PI的目的是理解几何图形的“正”部分,就像正实轴是实线的“正”部分一样。PI的工作将对理解几何、代数和组合学之间的关系产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Lam其他文献
DEVELOPMENT OF AN ARTIFICIAL INTELLIGENCE-ASSISTED VOICE ANALYTIC TOOL TO ASSESS THE CONSCIOUSNESS LEVEL OF PATIENTS AFTER SEDATED ENDOSCOPY
- DOI:
10.1016/j.gie.2024.04.942 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Thomas Lam;Ziyue Zhu;Xixin Wu;Raymond Tang - 通讯作者:
Raymond Tang
1235 WHAT IS THE NATURAL HISTORY OF FRANK HAEMATURIA? PROSPECTIVE LARGE COHORT STUDY WITH LONG-TERM FOLLOW-UP
- DOI:
10.1016/j.juro.2011.02.906 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:
- 作者:
Said Mishriki;Bhasker Smani;Ross Vint;Thomas Lam;Ghulam Nabi - 通讯作者:
Ghulam Nabi
On Symmetry and Positivity for Domino and Ribbon Tableaux
- DOI:
10.1007/s00026-005-0258-2 - 发表时间:
2005-10-01 - 期刊:
- 影响因子:0.700
- 作者:
Thomas Lam - 通讯作者:
Thomas Lam
1234 DIPSTICK HAEMATURIA: PROSPECTIVE OUTCOMES OF 974 PATIENTS
- DOI:
10.1016/j.juro.2011.02.905 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:
- 作者:
Said Mishriki;Bhasker Smani;Ross Vint;Thomas Lam - 通讯作者:
Thomas Lam
Thomas Lam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Lam', 18)}}的其他基金
Combinatorics in Geometry and Physics
几何和物理中的组合数学
- 批准号:
1953852 - 财政年份:2020
- 资助金额:
$ 15.62万 - 项目类别:
Continuing Grant
Combinatorics in Geometry, Physics, and Representation Theory
几何、物理和表示论中的组合学
- 批准号:
1464693 - 财政年份:2015
- 资助金额:
$ 15.62万 - 项目类别:
Continuing Grant
Combinatorics in geometry and representation theory
几何和表示论中的组合学
- 批准号:
1160726 - 财政年份:2012
- 资助金额:
$ 15.62万 - 项目类别:
Standard Grant
Affine combinatorics, Schubert calculus, and total positivity
仿射组合学、舒伯特微积分和总积极性
- 批准号:
0968696 - 财政年份:2009
- 资助金额:
$ 15.62万 - 项目类别:
Standard Grant
Combinatorics in geometry and representation theory
几何和表示论中的组合学
- 批准号:
0600677 - 财政年份:2006
- 资助金额:
$ 15.62万 - 项目类别:
Continuing Grant
相似海外基金
Schubert Structure Constants via Kohnert Combinatorics
通过 Kohnert 组合学计算舒伯特结构常数
- 批准号:
2246785 - 财政年份:2023
- 资助金额:
$ 15.62万 - 项目类别:
Standard Grant
New Applications of Combinatorics to Representation Theory and Schubert Calculus
组合数学在表示论和舒伯特微积分中的新应用
- 批准号:
1855592 - 财政年份:2019
- 资助金额:
$ 15.62万 - 项目类别:
Standard Grant
Combinatorics and geometry in Schubert calculus
舒伯特微积分中的组合学和几何
- 批准号:
502633-2017 - 财政年份:2017
- 资助金额:
$ 15.62万 - 项目类别:
Postdoctoral Fellowships
Combinatorics of Macdonald Polynomials and Schubert Calculus
麦克唐纳多项式和舒伯特微积分的组合学
- 批准号:
1833333 - 财政年份:2017
- 资助金额:
$ 15.62万 - 项目类别:
Continuing Grant
Combinatorics of Macdonald Polynomials and Schubert Calculus
麦克唐纳多项式和舒伯特微积分的组合学
- 批准号:
1600953 - 财政年份:2016
- 资助金额:
$ 15.62万 - 项目类别:
Continuing Grant
Algebraic combinatorics: symmetric orbit closures and Schubert calculus
代数组合学:对称轨道闭包和舒伯特微积分
- 批准号:
1500691 - 财政年份:2015
- 资助金额:
$ 15.62万 - 项目类别:
Standard Grant
Representation Theory and Schubert Calculus: Combinatorics and Interactions
表示论和舒伯特微积分:组合学和相互作用
- 批准号:
1362627 - 财政年份:2014
- 资助金额:
$ 15.62万 - 项目类别:
Standard Grant
Geometry, Arithmetic, and Combinatorics of Schubert Calculus
舒伯特微积分的几何、算术和组合学
- 批准号:
1303352 - 财政年份:2013
- 资助金额:
$ 15.62万 - 项目类别:
Standard Grant
Combinatorics of Crystals, Macdonald Polynomials, and Schubert Calculus
晶体组合、麦克唐纳多项式和舒伯特微积分
- 批准号:
1101264 - 财政年份:2011
- 资助金额:
$ 15.62万 - 项目类别:
Standard Grant
Combinatorics of affine Schubert calculus, K-theory, and Macdonald polynomials
仿射舒伯特微积分、K 理论和麦克唐纳多项式的组合
- 批准号:
1001898 - 财政年份:2010
- 资助金额:
$ 15.62万 - 项目类别:
Standard Grant