Combinatorics of Crystals, Macdonald Polynomials, and Schubert Calculus
晶体组合、麦克唐纳多项式和舒伯特微积分
基本信息
- 批准号:1101264
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project uses combinatorial structures and methods to solve problems in two areas: the representation theory of Lie algebras and Schubert calculus. In representation theory, the investigator will continue his work on deriving explicit tableau formulas in classical Lie types from the Ram-Yip formula for Macdonald polynomials and the Yip formula for their product; these formulas are in terms of the alcove walk model, which was introduced by Gaussent-Littelmann and the investigator in collaboration with A. Postnikov, and was then developed by other mathematicians. One of the applications is an efficient computation of the energy function, which defines the affine grading on a tensor product of Kirillov-Reshetikhin crystals. This application is based on an interesting connection between Macdonald polynomials, quantum cohomology, and affine crystals. In order to better understand it, the investigator proposes a crystal-theoretic counterpart (based on the alcove model) of the "quantum=affine" phenomenon relating the quantum cohomology of flag varieties and the homology of the affine Grassmannian. Other projects in representation theory involve explicit constructions of certain representations, as well as the topology of crystals (as posets) and of a poset which encodes the structure of Mirkovic-Vilonen cycles. In Schubert calculus, the investigator has projects related to the cohomology, quantum cohomology, and quantum K-theory of generalized flag varieties. Most of these projects involve new approaches to positive combinatorial formulas for the Schubert structure constants, which express the product of Schubert classes in the basis of Schubert classes.A unifying theme of this project is the emphasis on combinatorics and computation. During the last decades, computation has gained an important role in mathematical research. This stimulated the development of combinatorics, as it became clear that combinatorial structures are particularly well suited for encoding complex mathematical objects, while combinatorial methods are well suited for related computations. The investigator will use combinatorial techniques in representation theory (which is a fundamental tool for studying group symmetry, and which has important applications in mathematics and beyond, e.g., to theoretical physics), and in Schubert calculus (which has its origins in enumerative geometry, e.g., counting the lines or planes satisfying a number of generic intersection conditions). Certain representations and the related algebraic varieties are modeled by graphs or partially ordered sets. By studying the structure of these discrete objects, which displays remarkable complexity, the investigator will be able to derive important algebraic and geometric information.
本研究计画利用组合结构与方法来解决两个领域的问题:李代数的表示理论与舒伯特演算。在表示论中,研究者将继续他的工作,从麦克唐纳多项式的Ram-Yip公式和其乘积的Yip公式推导经典Lie类型中的显式tableau公式;这些公式是根据凹室行走模型,由Gaussent-Littelmann和研究者与A. Postnikov,然后由其他数学家开发。其中一个应用是能量函数的有效计算,它定义了Kirillov-Reshetikhin晶体的张量积上的仿射分级。这个应用程序是基于麦克唐纳多项式,量子上同调,仿射晶体之间的一个有趣的连接。为了更好地理解它,研究者提出了一个晶体理论的对应物(基于凹室模型)的“量子=仿射”现象有关的量子上同调的旗品种和同源性的仿射格拉斯曼。表示论中的其他项目涉及某些表示的显式构造,以及晶体(作为偏序集)和编码Mirkovic-Vilonen循环结构的偏序集的拓扑。在舒伯特演算中,研究者有与广义旗簇的上同调、量子上同调和量子K-理论相关的项目。这些项目中的大多数涉及到舒伯特结构常数的正组合公式的新方法,这些公式在舒伯特类的基础上表示舒伯特类的乘积。在过去的几十年里,计算在数学研究中扮演着重要的角色。这刺激了组合数学的发展,因为很明显,组合结构特别适合编码复杂的数学对象,而组合方法非常适合相关的计算。研究人员将使用表示论中的组合技术(这是研究群对称性的基本工具,在数学及其他领域具有重要应用,例如,理论物理学),以及舒伯特微积分(其起源于枚举几何学,例如,计数满足多个一般相交条件的线或平面)。某些表示和相关的代数簇由图或偏序集建模。通过研究这些离散物体的结构,它显示出显着的复杂性,研究人员将能够得出重要的代数和几何信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cristian Lenart其他文献
Towards a Combinatorial Model for $q$-weight Multiplicities of Simple Lie Algebras (Extended Abstract)
简单李代数 $q$ 权重重数的组合模型(扩展摘要)
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
C. Lecouvey;Cristian Lenart;Adam Schultze - 通讯作者:
Adam Schultze
DEMAZURE CRYSTALS , AND RELATED UNIFORM MODELS
DEMAZURE 水晶及相关制服模型
- DOI:
10.1090/conm/565/11181 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Cristian Lenart;Travis Scrimshaw - 通讯作者:
Travis Scrimshaw
A generalization of the alcove model and its applications
壁龛模型的推广及其应用
- DOI:
10.1007/s10801-014-0552-3 - 发表时间:
2011 - 期刊:
- 影响因子:0.8
- 作者:
Cristian Lenart;Arthur Lubovsky - 通讯作者:
Arthur Lubovsky
ピカール数1の正規delPezzo曲面について
关于皮卡德数为 1 的法线 delPezzo 曲面
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Cristian Lenart;Satoshi Naito;Daisuke Sagaki;Anne Schilling;Mark Shimozono;Todor Milanov;阿部紀行;小島秀雄 - 通讯作者:
小島秀雄
A uniform model for Kirillov―Reshetikhin crystals
基里洛夫—列谢蒂欣晶体的统一模型
- DOI:
10.46298/dmtcs.12790 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Cristian Lenart;S. Naito;Daisuke Sagaki;A. Schilling;M. Shimozono - 通讯作者:
M. Shimozono
Cristian Lenart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cristian Lenart', 18)}}的其他基金
Conference: Women in Algebra and Combinatorics. Northeast Conference Celebrating the Association for Women in Mathematics: 50 Years and Counting
会议:代数和组合学中的女性。
- 批准号:
2305413 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
New Applications of Combinatorics to Representation Theory and Schubert Calculus
组合数学在表示论和舒伯特微积分中的新应用
- 批准号:
1855592 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Representation Theory and Schubert Calculus: Combinatorics and Interactions
表示论和舒伯特微积分:组合学和相互作用
- 批准号:
1362627 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Combinatorial Studies in Algebra, Geometry, and Topology
代数、几何和拓扑的组合研究
- 批准号:
0701044 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Combinatorial Models in Algebra, Geometry, and Topology
代数、几何和拓扑中的组合模型
- 批准号:
0403029 - 财政年份:2004
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Big time crystals: a new paradigm in condensed matter
大时间晶体:凝聚态物质的新范例
- 批准号:
DP240101590 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Discovery Projects
Lubrication by Lamellar Liquid Crystals - An in-situ investigation of thin films with Brewster Angle microscopy technology
层状液晶润滑 - 使用布鲁斯特角显微镜技术对薄膜进行原位研究
- 批准号:
EP/Y023277/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
"In-Crystallo" Solid-State Molecular Organometallic Chemistry of Methane, Ethane and Propane. Synthesis, Structures and Catalysis in Single-Crystals
甲烷、乙烷和丙烷的“晶体内”固态分子有机金属化学。
- 批准号:
EP/W015498/2 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
- 批准号:
24K17016 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Achieving large polarization change induced by magnetic field in molecular crystals
在分子晶体中实现磁场引起的大极化变化
- 批准号:
24K17698 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding and Controlling Magnetic Two-Dimensional Crystals
理解和控制磁性二维晶体
- 批准号:
2326944 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Conference: 2023 Liquid Crystals GRC and GRS: Learning from Nature to Transform Technology through Liquid Crystal Science
会议:2023 液晶 GRC 和 GRS:向自然学习,通过液晶科学转变技术
- 批准号:
2318184 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Hierarchically Ordered Structures by Frustration Design of Liquid Crystals and Its Functional Exploration
液晶的分层有序结构及其功能探索
- 批准号:
23H02038 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)